
ActiveAD: Enhancing Anomaly Detection in Tabular Data through Active
Learning Strategies

Haoyan Luo1,2 , Xiaofan Gui2 , Wei Cao2 , Jiang Bian2

1School of Data Science, The Chinese University of Hong Kong, Shenzhen
2Microsoft Research Asia

haoyanluo@link.cuhk.edu.cn, {xiaofangui, weicao, jiang.bian}@microsoft.com

Abstract
Detecting anomalies in tabular data is critical in
many fields, including cybersecurity, finance, and
healthcare. However, labeling data for anomaly de-
tection is often labor-intensive and costly. Active
learning (AL) emerges as a promising approach to
mitigate these challenges, aiming to reduce the la-
beling cost while maintaining high detection per-
formance. In our project, we propose a pipeline,
ActiveAD, for active anomaly detection that com-
bines various anomaly detection models and ac-
tive learning querying strategies to improve the ef-
ficiency and effectiveness of identifying anoma-
lies with limited labeled data. Benefiting from
the recent study on anomaly detection benchmark,
we also offer a comprehensive comparison of dif-
ferent active learning method performance on di-
verse datasets. Extensive experiments reveal the
strengths and weaknesses of each method and the
impact of outliers, providing valuable insights into
their suitability under different conditions.

1 Introduction
Tabular anomaly detection (TAD), is an important research
topic in the field of machine learning that has been applied
to various domains, including finance [Ahmed et al., 2016],
security [Weller-Fahy et al., 2014], energy [Himeur et al.,
2021], traffic [Djenouri et al., 2018], and machine failure [Ri-
azi et al., 2019]. The primary goal of anomaly detection tasks
is to identify unusual patterns or behaviors within datasets,
which often represent rare events, errors, or malicious ac-
tivities. The success of an anomaly detection model relies
heavily on the quality and quantity of labeled data used for
training.

However, acquiring labeled data can be labor-intensive,
time-consuming, and expensive, especially in domains where
expert knowledge is required. The ADBench [Han et al.,
2022] paper highlights the importance of labeled data in
anomaly detection tasks, demonstrating that the performance
of anomaly detection models is highly dependent on the avail-
ability of high-quality labeled instances. This finding under-
lines the need for effective strategies to obtain and utilize la-
beled data efficiently.

Active learning is an approach that addresses this challenge
by intelligently selecting the most informative instances for
labeling, thereby reducing the labeling cost while maintain-
ing high detection performance. Despite its potential bene-
fits, the application of active learning to anomaly detection
tasks has not been extensively explored, and there is a lack of
comprehensive evaluations and pipelines for active anomaly
detection. In this research project, we aim to bridge this gap
by conducting a systematic investigation of various active
learning methods applied to anomaly detection tasks. Our
study evaluates the performance, strengths, and weaknesses
of these methods under different conditions, with a focus on
understanding the impact of outliers on the active learning
strategies, providing insights into the potential of active learn-
ing research in enhancing anomaly detection accuracy and ef-
ficiency.

We summarize our main contributions as follows:
• The development of an active anomaly detection

pipeline, facilitating further research and applications of
active learning in the anomaly detection domain.

• A comprehensive evaluation and comparison of differ-
ent active learning methods applied to anomaly detec-
tion tasks on diverse datasets.

• An investigation of the impact of outliers on the perfor-
mance of active learning strategies and the identification
of effective outlier handling techniques.

2 Related Work
In this section, we discuss the related work in the field of tabu-
lar anomaly detection, active learning, and their combination
for active anomaly detection.
Tabular Anomaly Detection Existing TAD algorithms can
be divided into three groups by the availability of ground truth
labels: supervised, semi-supervised, and unsupervised TAD.
Shallow methods like IForest [Liu et al., 2008] and LOF [Bre-
unig et al., 2000] have good performances on AD problems.
LOF employs a density-based approach and is a measurement
of how isolated an object is from the neighborhood. When it
comes to deep methods, DevNet [Pang et al., 2019] leverages
autoencoders for feature learning and a separate deep neural
network for classification. XGBOD [Zhao and Hryniewicki,
2018], on the other hand, is an ensemble method combin-
ing the strengths of XGBoost and k-Nearest Neighbors-based

Outlier Detection, offering an effective and interpretable so-
lution for anomaly detection with a focus on handling imbal-
anced data and diverse feature spaces.
Active Learning Active learning is a subfield of machine
learning that focuses on training models with limited labeled
data by iteratively selecting the most informative samples for
labeling. A comprehensive survey of active learning tech-
niques can be found in [Settles, 2009]. Various querying
strategies have been proposed, including uncertainty-based
strategies, such as margin sampling [Scheffer et al., 2001]
and BALD sampling[Gal and Ghahramani, 2016], diversity-
based strategies, such as BADGE sampling[Ash et al., 2019],
and hybrid strategies, such as Learning Loss for Active
Learning [Yoo and Kweon, 2019]. These strategies aim to
identify instances that, once labeled, will provide the most
significant improvement in the model’s performance.
Active Anomaly Detection The combination of active learn-
ing and anomaly detection has gained increasing attention,
as it can reduce the annotation effort required to achieve sat-
isfactory performance in identifying anomalies. [Liu et al.,
2014] proposed an active learning framework for one-class
SVMs to perform anomaly detection. Zhou and Paffenroth
[Zhou and Paffenroth, 2017] introduced an active learning
method for anomaly detection based on matrix factorization.
In more recent work, [Zha et al., 2020] proposed a frame-
work for active anomaly detection using deep learning mod-
els, which inspired our research.

3 ActiveAD Pipeline
In this section, we elaborate on the proposed active anomaly
detection (ActiveAD) pipeline. An overview of ActiveAD is
illustrated in Figure 1.

3.1 Data Handler
A Data handler is first designed to handle and manage labeled
and unlabeled data for active anomaly detection task. The
class has various methods to initialize, access, and manipulate
labeled and unlabeled datasets. The primary functions of the
class are:

• Store training and test datasets, along with their respec-
tive labels, and keep track of the labeled and unlabeled
data in the training set.

• Initialize a given number or percentage of labeled data
from the training dataset.

• Retrieve labeled, unlabeled, or partial datasets from the
stored data.

• Calculate the test accuracy based on provided predic-
tions and the metrics for anomaly detection, specifically
the Area Under the Receiver Operating Characteristic
curve (AUC-ROC) and the Area Under the Precision-
Recall curve (AUC-PR).

3.2 Base Model Training
After wrapping the original data, the pipeline trains an initial
anomaly detection base model using a small set of labeled
instances. Any tabular anomaly detection model including
supervised, semi-supervised, and unsupervised model can be

Figure 1: An overview of the proposed active anomaly detection
pipeline.

chosen, but the choice should depend on the nature of the
data and the specific requirements of the task. Ensure that
the initial training set includes both normal and anomalous
instances.

3.3 Active Learning Loop
The main part of the pipeline involves setting up the active
learning loop. This typically consists of three stages: predic-
tion, query, and update.

1. Prediction: Use the current model to predict the labels
of the unlabeled instances.

2. Query: Select a subset of the unlabeled instances for la-
beling based on an active learning strategy. This could
involve selecting the instances about which the model
is most uncertain or those that are most informative or
diverse.

3. Update: Add the labeled instances to the training set and
update the model.

Repeat this loop until a stopping criterion is met, such as
reaching a maximum number of iterations, using up the des-
ignated labels, or achieving a desired level of performance.

3.4 Active Learning Query Strategies
Based on different designs of query rules, we can classify cur-
rent active learning strategies into three parts: Uncertainty-
Based Strategies, Diversity-Based Strategies, and Hybrid
Strategies. Most representative strategies will be introduced
in detail in this section.

Margin Sampling
Margin Sampling [Scheffer et al., 2001] is a naive active
learning approach based on model uncertainty. It calculates
a margin between the most and second most likely labels for
one sample under the current model. The uncertainty is thus

measured by the margin, i.e., lower margin means greater un-
certainty. Specifically, the margin is calculated as:

ϕM (x) = Pθ(y
∗
1 |x)− Pθ(y

∗
2 |x)

The sample points with smallest margins will be queried iter-
atively in the active learning process.

Bayesian Active Learning by Disagreement
Bayesian Active Learning by Disagreement [Gal and Ghahra-
mani, 2016] is a more advanced uncertainty-based strategy. It
aims to maximize the information gain (or Mutual Informa-
tion), which is measured in terms of reduction in entropy of
the posterior distribution of model parameters.

I(y;ω|x,Dtrain) = H(y|x,Dtrain)−

EP(ω|Dtrain)[H(y|x,ω, Dtrain)]

The larger the information gain, the greater the uncertainty.

BADGE Sampling
BADGE Sampling [Ash et al., 2019] is a diversity-based AL
strategy that focuses on the diversity of queried data. The
main idea is to design an approach that creates a diverse batch
of examples, about which the model is uncertain. The al-
gorithm will first draw a random set of samples for initial
training, then it will compute a gradient embedding for the
samples with the initially trained model. According to the
gradient embedding, it will use a clustering algorithm to se-
lect samples and query for their data. Detailed algorithm is
shown in Appendix A.1

Learning Loss for Active Learning
Hybrid strategies like learning loss [Yoo and Kweon, 2019]
are proposed in order to combine the advantages of both kinds
of strategies. The idea of learning loss is to predict the loss of
the target model, and query samples based on the predicted
loss. It is assumed that samples with larger loss have greater
uncertainty, meanwhile deviate to some extent with data in
the current pool.

During training, the target prediction and the target annota-
tion are used to compute a target loss to learn the target model
as shown in Figure 2. Then, the target loss is regarded as a
ground-truth loss for the loss prediction module, and used to
compute the loss-prediction loss.

Figure 2: Loss Prediction Training

4 Experiments
4.1 Datasets
Proposed by Han et al., ADBench [Han et al., 2022] is
an open-source anomaly detection benchmark with 30 algo-
rithms on over 50 datasets and extensive experiments. Vari-
ous fields are covered in this benchmark suit, such as health-
care, audio and language processing, astronautics, image, and
finance. To give a comprehensive and fair evaluation, we con-
duct experiments on 10 most unstable datasets [Audibert et
al., 2020] from ADBench. An unstable task means that the
performance variance of different methods is large. For more
details, please refer to the original paper.

4.2 TAD Base Model
DevNet [Pang et al., 2019] and XGBOD [Zhao and
Hryniewicki, 2018] are two popular and state-of-the-art ma-
chine learning models used for tabular anomaly detection.
Both DevNet and XGBOD have been shown to be effective
in detecting anomalies in a variety of settings. They can serve
as strong backbone models when incorporating with different
active learning algorithms.

4.3 Setup Details
In our experiments, we fix the initial label ratio as 10 percent
and conduct experiments on 5 different budget ratios: 5 per-
cent, 10 percent, 25 percent, 50 percent, and 75 percent of the
total data size. The training batch size is set as one tenth of the
budget size if the budget is larger than 320 or 32 otherwise.

5 Results and Analyses
We show the overall performance in Table 1. Due to the lim-
ited space, we only provide results under one setting in the
main content. You can refer to more results in A.2.

Performance Comparisons
Given a fixed setting according to Table 1, we find that the
active learning method can significantly improve the model
performance compared to random sampling baseline. This
demonstrate the effectiveness of active learning strategies un-
der this ratio. However, when the budget ratio increase to
75 percent by Table 3, many strategies cannot beat random
sampling. We can see that only the hybrid strategy that takes
uncertainty and diversity both into account has better perfor-
mance, showing the need for more complex strategy design
in anomaly detection tasks.

Efficiency of Label Acquisition
The second observation can be drawn from Table 4 and Figure
3. When the process is divided into 10 rounds, we expect a a
trend that the performance will keep increasing given more la-
bels, and if more anomalies are found the performance would
be better. However, we discover many unusual occurrences
that the performance decreases as the model discovers more
anomalies. This reveals several insights, such as the possibil-
ity that we may not always need to query the datapoints with
the greatest anomaly score in each round. Instead, we may
think about capturing the long-term performance of labelling

strategies fault internetads ALOI letter magic mammo satellite wave yeast

RandomSampling 0.6919 0.7644 0.5112 0.5890 0.8581 0.8967 0.8471 0.8522 0.6924

AdversarialBIM 0.6467 0.8108 0.5681 0.5406 0.8029 0.9126 0.8255 0.5129 0.6906
AdversarialDF 0.6645 0.7708 0.5851 0.6927 0.8402 0.9126 0.8513 0.9316 0.6825
BALDDropout 0.7294 0.7942 0.5851 0.7453 0.8569 0.9276 0.8538 0.8721 0.6989
BadgeSampling 0.7149 0.8750 0.5432 0.6318 0.8629 0.9269 0.9180 0.8961 0.6542
EntropySampling 0.6692 0.7609 0.5831 0.7561 0.8410 0.9195 0.8390 0.9126 0.6774
EntropyDropout 0.6692 0.7609 0.5831 0.7561 0.8410 0.9195 0.8390 0.9126 0.6774
KCenterGreedy 0.7434 0.9232 0.5234 0.7332 0.8584 0.9277 0.8497 0.8860 0.6624
KCenterPCA 0.7542 0.9214 0.5376 0.7157 0.8614 0.8857 0.8526 0.5254 0.6586
KMeansSampling 0.6678 0.8472 0.5487 0.6390 0.8422 0.9290 0.8568 0.9170 0.6823
MarginSampling 0.6692 0.7609 0.5831 0.7561 0.8410 0.9195 0.8390 0.9126 0.6774
MarginDropout 0.6692 0.7609 0.5831 0.7561 0.8410 0.9195 0.8390 0.9126 0.6774
LossPrediction 0.8215 0.9614 0.5582 0.8624 0.9108 0.9518 0.9769 0.9746 0.6584
MeanSTD 0.7053 0.7912 0.5565 0.7607 0.8770 0.9275 0.8559 0.8883 0.6911
VarRatio 0.6692 0.7609 0.5831 0.8957 0.8410 0.9195 0.8390 0.9126 0.6774
WAAL 0.7850 0.9643 0.5728 0.9804 0.9040 0.9212 0.9494 0.9661 0.6610

Table 1: AUC-ROC of different query strategies, and baseline (random sampling) on all datasets. Base Model: DevNet. Budget Ratio: 0.5

(a) AUC-ROC performance (b) Number of outliers found

Figure 3: An intuitive illustration of single active learning process
on fault dataset, the budget ratio is 0.5, the AL strategy is Loss Pre-
diction (Base model: XGBOD).

in the design of active learning strategies, for instance, la-
belling anomalies first and then, after some iteration, labelling
more informative datapoints like the border points.

Diminishing Returns
We notice that when the budget ratio increases from 5 percent
to 75 percent, there are a increasing trend on the performance.
However, we also notice that there are effect of diminishing
returns for many datasets as shown in Figure 4. The rea-
son may be as more data points are labeled, the model might
have already learned most of the useful information from the
data. Adding more labeled data after a certain point may not
contribute much additional information, and the performance
improvement becomes marginal or even negative. We fur-
ther investigate into these marginal datasets and found that
the number of features of these datasets are often large, this
may inspire future practitioners to specifically design query
strategies that can adapt to these high-dimensional data.

6 Significance of the Study
The significance of this study lies in its comprehensive in-
vestigation of various active learning methods applied to
anomaly detection tasks, offering valuable insights into their

(a) AL on letter (b) AL on yeast

Figure 4: Comparison between baseline strategy and AL strategies
on one dataset (Fault), where budget ratio ranges from 0.05 to 0.75.
(Base Model: DevNet).

performance, strengths, and weaknesses under varying condi-
tions. Another essential contribution of this study is the focus
on understanding the impact of outliers on the performance of
active learning strategies. This is crucial for anomaly detec-
tion tasks, as outliers could significantly influence the detec-
tion models. The results can guide the development of robust
active learning strategies and anomaly detection models that
are capable of efficiently handling outliers.

7 Conclusion
The goal of this project was to understand the performance,
strengths, and weaknesses of each AL method under differ-
ent TAD conditions, with an emphasis on understanding the
impact of outliers on these strategies. The proposed Ac-
tiveAD pipeline and extensive experiment results showed that
AL methods have the potential to improve anomaly detection
performance while reducing labeling cost. However, the per-
formance of these methods varied depending on the specific
characteristics of the datasets and the presence of outliers.
Future research can build upon these findings, exploring al-
ternative anomaly detection models, developing scalable ac-
tive learning methods, and integrating additional sources of
information.

References
[Ahmed et al., 2016] Mohiuddin Ahmed, Abdun Naser

Mahmood, and Md Rafiqul Islam. A survey of anomaly
detection techniques in financial domain. Future Genera-
tion Computer Systems, 55:278–288, 2016.

[Ash et al., 2019] Jordan T Ash, Chicheng Zhang, Akshay
Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower
bounds. arXiv preprint arXiv:1906.03671, 2019.

[Audibert et al., 2020] Julien Audibert, Pietro Michiardi,
Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga.
Usad: Unsupervised anomaly detection on multivariate
time series. In Proceedings of the 26th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data
Mining, pages 3395–3404, 2020.

[Breunig et al., 2000] Markus M Breunig, Hans-Peter
Kriegel, Raymond T Ng, and Jörg Sander. Lof: iden-
tifying density-based local outliers. In Proceedings of
the 2000 ACM SIGMOD international conference on
Management of data, pages 93–104, 2000.

[Djenouri et al., 2018] Youcef Djenouri, Arthur Zimek, and
Marco Chiarandini. Outlier detection in urban traffic flow
distributions. In 2018 IEEE international conference on
data mining (ICDM), pages 935–940. IEEE, 2018.

[Gal and Ghahramani, 2016] Yarin Gal and Zoubin Ghahra-
mani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international con-
ference on machine learning, pages 1050–1059. PMLR,
2016.

[Han et al., 2022] Songqiao Han, Xiyang Hu, Hailiang
Huang, Mingqi Jiang, and Yue Zhao. Adbench: Anomaly
detection benchmark. arXiv preprint arXiv:2206.09426,
2022.

[Himeur et al., 2021] Yassine Himeur, Khalida Ghanem,
Abdullah Alsalemi, Faycal Bensaali, and Abbes Amira.
Artificial intelligence based anomaly detection of energy
consumption in buildings: A review, current trends and
new perspectives. Applied Energy, 287:116601, 2021.

[Liu et al., 2008] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua
Zhou. Isolation forest. In 2008 eighth ieee international
conference on data mining, pages 413–422. IEEE, 2008.

[Liu et al., 2014] Wei Liu, Gang Hua, and John R. Smith.
Unsupervised one-class learning for automatic outlier re-
moval. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3826–3833, 2014.

[Pang et al., 2019] Guansong Pang, Chunhua Shen, and An-
ton van den Hengel. Deep anomaly detection with devia-
tion networks, 2019.

[Riazi et al., 2019] Mohammad Riazi, Osmar Zaiane, Tomo-
haru Takeuchi, Anthony Maltais, Johannes Günther, and
Micheal Lipsett. Detecting the onset of machine failure
using anomaly detection methods. In International Con-
ference on Big Data Analytics and Knowledge Discovery,
pages 3–12. Springer, 2019.

[Scheffer et al., 2001] Tobias Scheffer, Christian Decomain,
and Stefan Wrobel. Active hidden markov models for
information extraction. In Advances in Intelligent Data
Analysis: 4th International Conference, IDA 2001 Cas-
cais, Portugal, September 13–15, 2001 Proceedings 4,
pages 309–318. Springer, 2001.

[Settles, 2009] Burr Settles. Active learning literature sur-
vey. 2009.

[Weller-Fahy et al., 2014] David J Weller-Fahy, Brett J
Borghetti, and Angela A Sodemann. A survey of dis-
tance and similarity measures used within network intru-
sion anomaly detection. IEEE Communications Surveys &
Tutorials, 17(1):70–91, 2014.

[Yoo and Kweon, 2019] Donggeun Yoo and In So Kweon.
Learning loss for active learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 93–102, 2019.

[Zha et al., 2020] Daochen Zha, Kwei-Herng Lai, Mingyang
Wan, and Xia Hu. Meta-aad: Active anomaly detection
with deep reinforcement learning, 2020.

[Zhao and Hryniewicki, 2018] Yue Zhao and Maciej K.
Hryniewicki. XGBOD: Improving supervised outlier de-
tection with unsupervised representation learning. In
2018 International Joint Conference on Neural Networks
(IJCNN). IEEE, jul 2018.

[Zhou and Paffenroth, 2017] Chong Zhou and Randy C Paf-
fenroth. Anomaly detection with robust deep autoen-
coders. In Proceedings of the 23rd ACM SIGKDD in-
ternational conference on knowledge discovery and data
mining, pages 665–674, 2017.

A Appendix
A.1 BADGE Algorithm
The main idea of BADGE Sampling [Ash et al., 2019] is to
design an approach that creates a diverse batch of examples,
about which the model is uncertain.

Algorithm: Batch Active Learning by Diverse
Gradient Embeddings
Input: Neural network f(x; θ), unlabeled pool of
examples U , initial number of examples M , number of
iterations T , number of examples in a batch B.
1: Labeled dataset S ←M examples drawn uniformly

at random from U together with queried labels.
2: Train an initial model θ1 on S by minimizing loss.
3: for t = 1, 2, . . . , T : do
4: For all examples x in U\S:

1. Compute its hypothetical label ŷ(x)
2. Compute gradient embedding

gx = ∂
∂θout

ℓCE(f(x; θ), ŷ(x)), where θout
refers to parameters of the final (output) layer

5: Compute St, a random subset of U\S using the
k-MEANS++ seeding algorithm on {gx : x ∈ U\S}
and query for their labels.

6. S ← S ∪ St

7. Train a model θt+1 on S by minimizing loss.
8. end for
9. return Final model θT+1.

A.2 Experimental Results
Experimental results for different budget ratios are shown in
the Table 2 and Table 3. Table 4 show the single active learn-
ing process which incorporates the discussion in Section 5

strategies fault internetads ALOI letter magic mammo satellite wave yeast

RandomSampling 0.6178 0.6301 0.5395 0.5578 0.8408 0.9056 0.8351 0.8522 0.6976

AdversarialBIM 0.6490 0.6647 0.5428 0.5734 0.7786 0.9125 0.8089 0.5000 0.6967
AdversarialDF 0.6408 0.6911 0.5842 0.5711 0.7961 0.9127 0.8449 0.9258 0.6649
BALDDropout 0.6838 0.6608 0.5674 0.6103 0.8719 0.9117 0.8515 0.8883 0.6896
BadgeSampling 0.6395 0.6750 0.5539 0.5406 0.8747 0.9224 0.8504 0.7926 0.6622
EntropySampling 0.6374 0.6402 0.5826 0.6706 0.7911 0.9169 0.8447 0.9095 0.6774
EntropyDropout 0.6374 0.6402 0.5826 0.6706 0.7911 0.9169 0.8447 0.9095 0.6774
KCenterGreedy 0.6854 0.8577 0.5006 0.6041 0.8215 0.9297 0.8477 0.8660 0.6847
KCenterPCA 0.6334 0.8200 0.5320 0.7304 0.8271 0.8706 0.8438 0.5419 0.6580
KMeansSampling 0.6033 0.7108 0.5585 0.5584 0.8267 0.9205 0.8503 0.5331 0.6512
MarginSampling 0.6374 0.6402 0.5826 0.6706 0.7911 0.9169 0.8447 0.9095 0.6774
MarginDropout 0.6374 0.6402 0.5826 0.6706 0.7911 0.9169 0.8447 0.9095 0.6774
LossPrediction 0.7631 0.9560 0.5532 0.7401 0.9090 0.9233 0.9598 0.9755 0.6533
MeanSTD 0.6782 0.6618 0.5469 0.6424 0.8787 0.9182 0.8567 0.8891 0.6546
VarRatio 0.6374 0.6402 0.5826 0.6706 0.7911 0.9169 0.8447 0.9095 0.6774
WAAL 0.7340 0.9529 0.5741 0.6616 0.9036 0.9050 0.8928 0.9661 0.6705

Table 2: AUC-ROC of different query strategies, and baseline (random sampling) on all datasets. Base Model: DevNet. Budget Ratio: 0.25

strategies fault internetads ALOI letter magic mammo satellite wave yeast

RandomSampling 0.7520 0.8635 0.5645 0.7367 0.8642 0.9172 0.8552 0.8985 0.6892

AdversarialBIM 0.6578 0.8419 0.5622 0.5657 0.8412 0.9133 0.8488 0.5536 0.6807
AdversarialDF 0.6615 0.8520 0.5799 0.6294 0.8554 0.9276 0.8531 0.9182 0.6876
BALDDropout 0.7056 0.8269 0.5578 0.6651 0.8582 0.9277 0.8553 0.9029 0.6768
BadgeSampling 0.7388 0.8532 0.5393 0.5990 0.8668 0.9312 0.9330 0.9166 0.7056
EntropySampling 0.6769 0.8664 0.5869 0.7957 0.8451 0.9275 0.8498 0.9203 0.6791
EntropyDropout 0.6769 0.8664 0.5869 0.7957 0.8451 0.9275 0.8498 0.9203 0.6791
KCenterGreedy 0.7731 0.9406 0.5349 0.6979 0.8749 0.9278 0.8542 0.9217 0.6937
KCenterPCA 0.7718 0.9413 0.5484 0.7475 0.8731 0.9183 0.8519 0.7248 0.7039
KMeansSampling 0.7252 0.9321 0.5561 0.7097 0.8636 0.9292 0.8571 0.9415 0.6817
MarginSampling 0.6769 0.8664 0.5869 0.7957 0.8451 0.9275 0.8509 0.9203 0.6791
MarginDropout 0.6769 0.8664 0.5869 0.7957 0.8451 0.9275 0.8509 0.9203 0.6791
LossPrediction 0.8315 0.9677 0.5663 0.8361 0.9164 0.9582 0.9795 0.9753 0.6712
MeanSTD 0.6970 0.8742 0.5663 0.9277 0.8719 0.9275 0.8568 0.9753 0.6825
VarRatio 0.6769 0.8664 0.5869 0.7957 0.9275 0.9195 0.8509 0.9203 0.6791
WAAL 0.8012 0.9645 0.5364 0.7883 0.9306 0.9212 0.9505 0.9398 0.6664

Table 3: AUC-ROC of different query strategies, and baseline (random sampling) on all datasets. Base Model: DevNet. Budget Ratio: 0.75

All X All Outliers #Batch New Outliers ROC-AUC

Round 0 136 38 68 38 0.6907
Round 1 204 86 68 48 0.7479
Round 2 272 112 68 26 0.7578
Round 3 340 136 68 24 0.7759
Round 4 408 174 68 38 0.7977
Round 5 476 209 68 35 0.7721
Round 6 544 235 68 26 0.7549
Round 7 612 244 68 9 0.7814
Round 8 680 281 68 37 0.8060
Round 9 748 317 68 36 0.8128
Round 10 816 333 68 16 0.8215

Table 4: A single active learning process on fault dataset, Base Model: XGBOD. Budget Ratio: 0.5. AL Strategy: Loss Prediction.

	Introduction
	Related Work
	ActiveAD Pipeline
	Data Handler
	Base Model Training
	Active Learning Loop
	Active Learning Query Strategies
	Margin Sampling
	Bayesian Active Learning by Disagreement
	BADGE Sampling
	Learning Loss for Active Learning

	Experiments
	Datasets
	TAD Base Model
	Setup Details

	Results and Analyses
	Performance Comparisons
	Efficiency of Label Acquisition
	Diminishing Returns

	Significance of the Study
	Conclusion
	Appendix
	BADGE Algorithm
	Experimental Results

