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Abstract

This thesis investigates the mechanisms underlying large language models (LLMs)
through the lens of explainability, with two primary goals: enhancing user trust by
making model reasoning more transparent and providing developers with insights
to identify undesired properties and improve performance. We categorize current
explainability methods into Local and Global Analysis, emphasizing their roles in
interpreting model behaviors and enhancing task performance. Additionally, we
explore the hidden representations in LLMs, analyzing how token- and layer-level
representations evolve and contribute to predictions. Our study further extends to
universal concepts encoded in LLMs, examining knowledge neuron theory and con-
ducting a case study on bias neuron detection, revealing semantically meaningful
hidden representations and their potential for influencing both training and gener-
ation processes. Building on these insights, we propose novel techniques for model
refinement and bias mitigation. The Mixture-of-Depths (MoD) framework is intro-
duced as a method for tuning LLMs by leveraging representations across multiple
layers, resulting in improved performance with fewer trainable parameters. Further-
more, we present Localized Subspace Projection and Editing (LoPE), a training-free
debiasing method that effectively reduces bias without compromising language mod-
eling performance. This thesis seeks to bridge the gap between explainability and
practical applications in LLM development. By providing a structured understand-
ing of explainability methods and introducing new techniques for model tuning and
alignment, this thesis aims to contribute to the creation of more transparent, robust,
and ethically aligned language models.
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Chapter 1

Introduction

The recent advancements in transformer-based large language models (LLMs) have
significantly transformed the field of natural language processing (NLP). Models like
GPT-4 (OpenAI, 2023a) have exhibited initial signs of general intelligence (Luo and
Specia, 2024; Zhao et al., 2023b), while smaller models have demonstrated strong
reasoning abilities, solving challenging commonsense and mathematical problems
(Lu et al., 2022; Touvron et al., 2023c; Dubey et al., 2024). Despite their power,
these models remain opaque, which can lead to unintended consequences such as
the generation of harmful or misleading content (Gehman et al., 2020) and model
hallucinations (Weidinger et al., 2021). This opacity underscores the critical need
for improved explainability—not only for understanding these models but also for
ensuring their responsible and ethical application.

Explainability in LLMs serves two essential purposes. For end users, it fosters
trust by making the model’s reasoning more transparent in a non-technical way, aid-
ing in the understanding of both its capabilities and limitations (Zhao et al., 2023b).
For developers and researchers, explainability offers insights into unintended biases
and potential areas for improvement, helping to enhance model performance on
downstream tasks (Bastings et al., 2022; Meng et al., 2023a; Li et al., 2024). How-
ever, the increasing scale of LLMs introduces significant challenges to explainability.
Larger models with more parameters and training data are harder to interpret, and
traditional explanation methods, such as SHAP values (Lundberg and Lee, 2017),
become less practical for models of this scale (Zhao et al., 2023b). Moreover, a
deeper understanding of LLM-specific phenomena, such as in-context learning (Ha-
lawi et al., 2023; Hendel et al., 2023; Todd et al., 2023; Wang et al., 2023b), along-
side addressing issues like model hallucinations (Ji et al., 2023; Chuang et al., 2024)
and inherent biases (dev, 2023; An and Rudinger, 2023; Schick et al., 2021), is cru-
cial for the ongoing refinement and ethical deployment of these models.

In this thesis, we first present a structured categorization of current explainabil-
ity methods in Chapter 3. We divide these into two broad domains: Local Analysis
and Global Analysis. Local Analysis focuses on feature attribution (Sundararajan
et al., 2017; Kobayashi et al., 2020; Modarressi et al., 2023) and transformer block
analysis (Yuksekgonul et al., 2024; Geva et al., 2021, 2022a), examining detailed
model operations. In contrast, Global Analysis includes probing-based methods (He-
witt and Manning, 2019b; Li et al., 2024) and mechanistic interpretability (Wang
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Chapter 1. Introduction

et al., 2023a; Nanda et al., 2023), providing a comprehensive understanding of
model behaviors. We also discuss approaches leveraging explainability to enhance
model performance (Xiao et al., 2023; Wang et al., 2023b), control generation, and
align models with human preferences (Qi et al., 2024; Lee et al., 2024). These
insights show promise in both understanding model mechanisms and practical ap-
plications.

In Chapter 4, we explore hidden representations in the reasoning processes of
LLMs. This chapter highlights key observations from our experiments, focusing on
how token and layer-level representations evolve across model layers (§4.1.1) and
how specific tokens contribute to predictions (§4.1.1). We investigate the concept
extraction process in the vocabulary space, demonstrating how pretrained vocab-
ulary heads interpret hidden representations. We also conduct ablation studies to
analyze the contributions of attention and MLP components within Transformer
models (§4.1.1). The extracted concepts from hidden representations show a geo-
metric structure that closely aligns with human understanding (§4.1). From a more
module-specific perspective, we delve into knowledge neuron theory (Dai et al.,
2022a; Geva et al., 2022b), conducting a case study on bias neuron detection in
LLMs (§4.3.1). Our analysis reveals that bias neurons are distributed across multi-
ple layers, emphasizing the importance of multi-layer inspection and manipulation
when addressing bias in LLMs. Furthermore, we examine the predictive power of
late-layer representations, showing that these layers not only contain rich informa-
tion during inference but also offer potential for efficient task adaptation through
late-layer tuning (§4.2).

Chapter 5 presents methods for model refinement and alignment, inspired by
the observations in Chapter 4. We propose the Mixture-of-Depths (MoD) framework
(§5.1) for tuning language models. Instead of relying solely on the final layer’s out-
put, MoD combines the predictions from the last k layers using routing weights,
forming an ensemble (§5.1.1). Experimental results show that MoD improves per-
formance on arithmetic and commonsense reasoning tasks, achieving results compa-
rable to traditional fine-tuning methods while significantly reducing the number of
trainable parameters (§5.1.2). Additionally, we explore the trade-off between per-
formance and efficiency using sparse routing mechanisms (§5.1.3), demonstrating
that MoD balances predictive accuracy and computational resource optimization.

We also introduce a lightweight debiasing approach using Localized Subspace
Projection and Editing (LoPE) in §5.2, motivated by the bias neuron case study in
§4.3.1. LoPE identifies bias neurons across multiple layers and mitigates their ef-
fects by projecting activations away from bias-related subspaces. This training-free
method effectively reduces bias without compromising the model’s ability to gen-
erate meaningful, coherent text. In §5.2.3, we show that LoPE outperforms other
baseline debiasing methods, both in terms of bias mitigation and preserving lan-
guage modeling quality. LoPE offers a practical solution for addressing bias in large
language models rooted in explainability research.

In summary, this thesis explores the mechanisms underlying LLMs through the
lens of explainability. By categorizing existing explainability methods, analyzing hid-
den representations, and proposing novel techniques for model refinement and bias
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Chapter 1. Introduction

mitigation, we aim to contribute to both the empirical understanding and practical
advancements in LLM development. Our findings highlight the significance of ex-
plainability not only in understanding model behaviors but also in facilitating more
effective model tuning and alignment with human preferences. Ultimately, this re-
search seeks to bridge the gap between explainability and practical applications,
providing pathways to develop more transparent, robust, and ethically aligned lan-
guage models. The following chapters systematically present the methodologies,
experiments, and results that support these contributions.
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Chapter 2

Preliminaries

2.1 Notations

In this section, we define the notations used throughout the thesis and introduce the
key components of a Transformer model, which is the backbone of large language
models (LLMs). Table 2.1 summarizes the notations used in the following chapters.

Table 2.1: Summary of notations used in the thesis

Notation Description

x = {x1, x2, . . . , xn} Input sequence of tokens, length n
h(l) Hidden states at layer l
Li The ith layer (block) of an LLM
d,N Hidden dimension, total number of layers in an LLM
WQ,WK ,WV Weight matrices for queries, keys, and values in attention
Wl

K ,W
l
V Weight matrices for key and value in 2-layer MLP

σ(·) Activation function in the feed-forward network (FFN)
ϕ(·) The language modeling head
logitst Logits for the tth token
A,B Low-rank matrices in LoRA (Low-Rank Adaptation)
Attn(l) Self-attention operation at layer l
MLP(l) or FFN(l) Feed-forward network at layer l
LN(l) Layer normalization at layer l
PE(pos, i) Positional encoding at position pos and dimension i
RoPE(x, pos) Rotary position embedding at position pos
γ, β Learnable parameters in layer normalization

2.2 Transformer Architectures

Before we go deep into the LLMs, the current SOTA models are mostly built upon
transformer models, which is first introduced by Vaswani et al. (2017), is based on

4



Chapter 2. Preliminaries

the attention mechanism, which allows the model to capture long-range dependen-
cies within a sequence more effectively than previous recurrent neural networks
(RNNs) (Schmidt, 2019) or convolutional neural networks (CNNs) (O’Shea and
Nash, 2015) and empirically more suitable for constrcuting large scale models1.

2.2.1 Multi-Head Attention Mechanism

The core component of the Transformer architecture is the multi-head self-attention
mechanism (Vaswani et al., 2017), which enables the model to weigh the impor-
tance of different tokens in the input sequence when encoding each token. The
self-attention mechanism computes attention scores for each pair of tokens and us-
ing these scores to generate a context-aware representation for each token. Multi-
head allows the model to attend to different parts of the sequence in parallel and to
capture diverse aspects of the relationships between tokens (Luo and Specia, 2024).

Formally, given an input sequence of tokens x = {x1, x2, . . . , xn}, the model first
embeds these into a list of representations h = (h1, . . . ,hn) . for each token xi, the
model computes a set of query vectors qh

i , key vectors kh
i , and value vectors vh

i for
each attention head h = 1, . . . , H, where H denotes the total number of heads. The
projections are computed as follows:

qh
i = hWQ

h , kh
i = hWK

h , vh
i = hWV

h ,

where WQ
h , WK

h , and WV
h are learnable weight matrices specific to the h-th head.

The attention score ehij between tokens xi and xj within head h is calculated as
the scaled dot product of the corresponding query and key vectors:

ehij =
qh
i · kh

j√
dhk

,

where dhk is normally the dimensionality of the key vectors for head h. The scaling
factor

√
dhk is introduced to control the magnitude of the dot product and stabilize

the gradients during training. These attention scores are then passed through a
softmax function to generate attention weights αh

ij = softmax(ehij), which are used
to compute a weighted sum of the value vectors:

headh(h)i =
n∑

j=1

αh
ijv

h
j . (2.1)

Each attention head produces a sequence of output vectors headh(X)i corre-
sponding to each token xi. These outputs are then concatenated and projected back
into the original feature space using a linear transformation:

Attn(h)i = Concat(head1(h)i, . . . ,headH(h)i)W
O, (2.2)

1There are also some other types of models like the State Space Models (SSMs) (Gu and Dao,
2024) showing promising ability for capturing long context information but we will focus on
transformer-based LMs in this thesis.

5



Chapter 2. Preliminaries

where WO is a learnable output projection matrix. The concatenation of the outputs
from all heads allows the model to integrate information from multiple attention
subspaces, enhancing the expressiveness of the resulting token representations.

The use of multiple attention heads provides the Transformer model with the
ability to attend to different aspects of the input sequence simultaneously. For exam-
ple, one head might focus on syntactic relationships between words, while another
might focus on semantic connections (Voita et al., 2019). This parallel processing
across heads enriches the overall representation learned by the model, contributing
to its effectiveness across various NLP tasks.

2.2.2 Feedforward Neural Network

In addition to the attention mechanisms, each layer of the Transformer architecture
includes a position-wise feedforward neural network (FFN) (Bebis and Georgiopou-
los, 1994)2. The MLP operates independently on each token position and consists of
two linear transformations with a non-linear activation function applied in between.
Formally, the MLP can be expressed as:

MLPl(h) = σ(hWl
K + bl

K)W
l
V + bl

V , (2.3)

where Wl
K , Wl

V , bl
K , and bl

V are the learnable up-projection and down-projection
weight matrices and bias vectors, and σ(·) denotes the activation function applied
element-wise3.

The MLP Sub-update

From the residual stream perspective, the residual stream is updated by the attention
heads and MLP blocks from subsequent layers (bias terms omitted):

hℓ+1
i = hℓ

i + MLPℓ(hℓ
i + Attnℓ(hℓ

i)) (2.4)

Several works have demonstrated that the updates to the residual stream from each
MLP block can be further decomposed (Geva et al., 2022b; Dai et al., 2022b; Gurnee
et al., 2023) (cf. the neuron theory in §3.1.1). Specifically, MLP blocks consist of
two linear transformations, separated by pointwise non-linear activations σ:

MLPℓ(hℓ) = σ
(
W ℓ

Kh
ℓ
)
W ℓ

V , (2.5)

where W ℓ
K ,W

ℓ
V ∈ Rdmlp×d.

We denote the i-th row of W ℓ
K as kℓ

i (referred to as key vectors), and the i-th
column of W ℓ

V as vℓ
i (referred to as value vectors). For simplicity, we may omit the

”MLP” prefix and use kℓ
i and vℓ

i .

2FFN is normally used interchangeably with a two-layer multi-layer perceptron (MLP), and these
two terms share the same meaning throughout this thesis.

3For some activation function like SiLU there might be three different weights including a gating
weights instead of only WK and WV , we omit them for simplicity here
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Chapter 2. Preliminaries

Equation (2.5) implies that the output of MLP blocks is the sum of the value
vectors vℓ

i , each scaled by a corresponding coefficient mℓ
i , where mℓ := σ

(
W ℓ

Kh
ℓ
)
∈

Rdmlp:

MLPℓ(hℓ) =

dmlp∑
i=1

σ(hℓ · kℓ
i)v

ℓ
i =

dmlp∑
i=1

mℓ
iv

ℓ
i . (2.6)

In other words, the MLP block writes to the residual stream dmlp times, once for each
value vector. These updates are referred to as sub-updates in current work (Geva
et al., 2022b; Lee et al., 2024).

Activation Functions in LLMs

The choice of activation function σ(·) in the FFN plays a crucial role in the model’s
performance and has been the subject of extensive research and experimentation in
the development of LLMs (Shen et al., 2023). Below, we discuss several activation
functions that are commonly used in state-of-the-art LLMs.

ReLU (Rectified Linear Unit) The ReLU (Agarap, 2019) activation function is de-
fined as:

σReLU(x) = max(0, x),

where x represents the input to the activation function. ReLU is widely used due
to its simplicity and effectiveness in mitigating the vanishing gradient problem. In
the context of large language models, ReLU is used in the OPT series (Zhang et al.,
2022). However, ReLU may suffer from the “dying ReLU” problem (Lu, 2020), where
neurons can become inactive if the inputs are negative.

GELU (Gaussian Error Linear Unit) The GELU (Hendrycks and Gimpel, 2023)
activation function is defined as:

σGELU(x) = x · Φ(x) = x · 1
2

[
1 + erf

(
x√
2

)]
,

where Φ(x) is the cumulative distribution function of the standard normal distri-
bution, and erf(·) denotes the error function. GELU introduces stochasticity into
the activation function by blending the input with a probabilistic factor, making it
smoother than ReLU. This activation function is used in models such as GPT-2 (Rad-
ford et al., 2019a), Pythia (Biderman et al., 2023), and the Gemma (Team et al.,
2024) series.

SiLU (Sigmoid Linear Unit) The SiLU (Elfwing et al., 2017) activation function,
also known as the swish activation, is defined as:

σSiLU(x) = x · σsigmoid(x) =
x

1 + e−x
,
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Chapter 2. Preliminaries

where σsigmoid(x) is the sigmoid function. SiLU offers a balance between smoothness
and non-linearity, providing a smooth, non-monotonic function that tends to perform
well in deep learning models. It is used in advanced LLMs such as Qwen (Bai et al.,
2023), Mistral (Jiang et al., 2023), and LLaMA (Touvron et al., 2023a,c) series,
where its smooth gradient properties help in achieving better optimization during
training, particularly in deeper networks.

2.2.3 Layer Normalization

First introduced by (Ba et al., 2016), layer normalization (LN) addresses the issue of
internal covariate shift, where the distribution of inputs to each layer changes during
training. By normalizing the inputs to each layer, LayerNorm ensures that the inputs
have zero mean and unit variance, which helps in achieving faster convergence and
enhancing the robustness of the model. Formally, given an input h ∈ Rn×d, where n
is the number of tokens and d is the feature dimensionality, LayerNorm is computed
as follows:

LayerNorm(h) =
h− µ(h)

σ(h) + ϵ
⊙ γ + β, (2.7)

where µ(h) and σ(h) are the mean and standard deviation across the hidden dimen-
sion d, γ and β are learnable parameters that allow the model to scale and shift the
normalized output, and ϵ is a small constant added for numerical stability to prevent
division by zero.

RMSNorm RMSNorm (Zhang and Sennrich, 2019) is a variant of LayerNorm that
simplifies the normalization process by normalizing the input using only the root
mean square (RMS) of the features, without subtracting the mean. This can be
particularly advantageous in scenarios where the mean subtraction in LayerNorm
is less critical or where a more computationally efficient normalization method is
desired. Formally, RMSNorm is defined as:

RMSNorm(h) =
h

RMS(h) + ϵ
⊙ γ + β, (2.8)

where RMS(h) =
√

1
d

∑d
i=1 h

2
i is the root mean square across the hidden dimension,

and γ and β are learnable scaling and shifting parameters, similar to those in Layer-
Norm. RMSNorm reduces the amount of computation and increases efficiency over
LayerNorm and has been widely adopted in deep models like LLaMA (Touvron et al.,
2023a,c).

Post-LN vs. Pre-LN Approaches

In Transformer architectures, normalization can be applied in different positions
within each layer, leading to two common strategies: Pre-LN and Post-LN.
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Post-LN In the original Transformer design by (Vaswani et al., 2017), normaliza-
tion is applied after the sublayers (either the attention or the feedforward network),
a strategy referred to as post-norm. In Post-LN models, each sublayer’s output is first
passed through the sublayer itself (attention or FFN), and then the resulting output
is normalized:

hout = LN(Sublayer(hin) + hin),

where hin is the input to the sublayer, and hout is the final output of the post-norm
operation. Unsupervised pre-trained models based on the Post-LN Transformer ar-
chitecture also show impressive performance in many downstream tasks (Radford
et al., 2019a; Devlin et al., 2019).

Pre-Norm Alternatively, in the Pre-LN approach, normalization is applied both be-
fore the input and inside the residual blocks, specifically before the Attention and
FFN modules:

hout = LN(hin) + Sublayer(LN(hin)),

In this case, the input X is normalized first, and then it is processed through the
sublayer, with normalization also being applied inside the residual blocks before the
Attn and FFN modules. Pre-LN models tend to stabilize the gradient flow, particu-
larly in very deep networks, as the normalization ensures that each sublayer oper-
ates on inputs with a consistent distribution Nguyen and Salazar (2019). Xiong et al.
(2020) show that the gradients in Pre-LN models are well-behaved at initialization,
enabling warm-up-free training that achieves comparable results with significantly
less training time.

2.2.4 Positional Encoding

The Transformer architecture does not inherently encode the order of tokens in a
sequence, as it operates independently of the sequential nature of the input. To ad-
dress this, positional encoding is introduced to provide the model with information
about the relative or absolute positions of tokens within the sequence. Positional
encoding vectors are added to the input embeddings, enabling the model to cap-
ture the sequential dependencies necessary for tasks such as language modeling and
translation.

Sinusoidal Positional Encoding The most common approach to positional encod-
ing, as introduced in the original Transformer model (Vaswani et al., 2017), uses
sinusoidal functions to generate the positional encodings. These encodings are de-
terministic and provide a unique representation for each position in the sequence.
The sinusoidal positional encoding is defined as:

PE(pos, 2i) = sin
( pos

100002i/dmodel

)
, PE(pos, 2i+ 1) = cos

( pos

100002i/dmodel

)
,

where pos is the position of the token in the sequence, i is the index of the dimension,
and dmodel is the dimensionality of the model’s embeddings. The sine and cosine
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functions providing a smooth and continuous representation of position. The choice
of using both sine and cosine allows the model to distinguish between different
positions and their relative distances effectively.

Rotary Position Embedding (RoPE) While sinusoidal positional encoding is ef-
fective, it has limitations, particularly when dealing with tasks requiring the model
to generalize positional information beyond the training data’s range. To address
this, Rotary Position Embedding (RoPE) was introduced in the RoFormer model (Su
et al., 2023). RoPE encodes the position information by rotating the query and key
vectors in the self-attention mechanism. Specifically, it applies a rotation matrix to
the token embeddings, which allows the model to capture both absolute and relative
positional relationships more effectively. Formally, given a token’s position pos and
its corresponding query or key vector x ∈ Rd, RoPE applies the following transfor-
mation:

RoPE(x, pos) = x(1:d/2) cos(θpos) + x(d/2+1:d) sin(θpos),

where x(1:d/2) and x(d/2+1:d) are the first and second halves of the vector x, and θpos is
a position-dependent vector defined as:

θpos =
( pos

100002i/d
,

pos

100002i/d
, . . .

)d/2
i=1

.

This rotation mechanism allows RoPE to encode relative position information di-
rectly within the attention score calculations, thereby enhancing the model’s ability
to recognize positional patterns even when the tokens are far apart in the sequence.

2.3 Transformer-based Large Language Models

2.3.1 Residual Stream Flow in Transformer Layers

In Transformer architectures, such as those in the LLaMA series, each layer updates
its hidden states by adding the outputs of the attention mechanism and the feed-
forward network (FFN) to the previous hidden states via residual connections (He
et al., 2016). These residual connections help preserve information across layers and
facilitate the effective training of deep models by mitigating issues like vanishing
gradients. Formally, the update for the hidden state h(l) at layer l is given by:

h(l) = h(l−1) + Attn(l)
(
h(l−1)

)
+ FFN(l)

(
h(l−1)

)
, (2.9)

These residual connections ensure that each layer builds upon the represen-
tations learned by earlier layers without overwriting or losing critical information.
After the final layer, the output h(L) is passed through the output head to produce
the model’s predictions.
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2.3.2 Pretraining and Finetuning

Transformer-based LLMs are constructed by stacking multiple Transformer layers
to form deep networks capable of learning intricate patterns from vast amounts of
data. The development of LLMs typically involves two key phases: pretraining and
finetuning. During the pretraining phase, the model is trained on a large corpus in
an unsupervised manner to learn general-purpose language representations. This is
achieved by optimizing the model on self-supervised tasks, where the model predicts
parts of the input text based on the rest. Common pretraining objectives include:

• Masked Language Modeling (MLM): Used in models like BERT (Devlin et al.,
2019), where a percentage of tokens are randomly masked, and the model
predicts the masked tokens based on the unmasked context.

• Causal Language Modeling (CLM): Employed in autoregressive models like
GPT (Radford et al., 2019a; Brown et al., 2020a) and LLaMA (Touvron et al.,
2023a,c), where the model predicts the next token in a sequence given previ-
ous tokens.

Pretraining is conducted on vast datasets, often comprising billions of tokens from
diverse sources such as books, websites, and social media (OpenAI, 2023b). This
allows LLMs to acquire broad linguistic knowledge, which is later adapted to specific
tasks through finetuning.

Finetuning, or Post-training, adapts a pretrained LLM to a downstream task. The
model is trained on a labeled dataset, typically smaller than the pretraining data, to
optimize performance on the specific task. For generation tasks, the objective is
language modeling. Given an input sequence x = (x1, . . . , xn), the optimization
goal is to minimize the cross-entropy loss with the predicted output sequence y =
(y1, . . . , ym):

LLM = min
Φ

{
−

m∑
i=1

log pΦ (yi | x,y<i)

}
(2.10)

Functional Heads

At the output of the final Transformer layer, LLMs typically include functional heads
that are designed to produce task-specific outputs. The language modeling head is
used in tasks like text generation, where the goal is to predict the next token in
a sequence or to generate coherent text. This head typically consists of a linear
layer followed by a softmax function, mapping the output of the last Transformer
layer to a probability distribution over the vocabulary. Given hL

t the hidden state
corresponding to the t-th token from the last Transformer layer, a language modeling
head is defined as:

ϕ(hL
t ) = hL

t WLM + bLM, (2.11)

where WLM and bLM are the weight matrix and bias vector for the language mod-
eling head. The softmax function is applied to the logits to obtain the probability
distribution over the vocabulary, from which the next token is sampled or selected.
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For classification tasks, a classification head ϕθ(·) takes the final-layer represen-
tation at the first token (CLS) and outputs a class distribution (Devlin et al., 2019):

ϕθ(h
(L)
0 ) = softmax

(
Wo tanh(Wdh

(L)
0 + bd) + bo

)
(2.12)

The optimization goal is to minimize the cross-entropy loss of the target class y given
input x (single-label classification task as an example):

LCLS = min
Φ,θ

{− log ϕθ(y | hΦ(x))} (2.13)

In this thesis, we primarily focus on the language modeling head, which is
widely adopted in decoder-only autoregressive models such as GPT (Radford et al.,
2019a) and LLaMA (Touvron et al., 2023a,c) with causal language modeling (CLM)
as their core training objectives.

2.3.3 Low-Rank Approximation for Finetuning

As the size of LLMs continues to grow, the computational cost and memory require-
ments for training and finetuning these models have become significant challenges.
To address these challenges, low-rank approximation methods have been proposed
as efficient alternatives to traditional finetuning techniques. One prominent ap-
proach is LoRA, introduced by Hu et al. (2021), which significantly reduces the
number of trainable parameters and the associated computational overhead.

LoRA: Low-Rank Adaptation of Large Language Models The core idea behind
LoRA is to decompose the weight updates during finetuning into low-rank matrices,
which reduces the number of parameters that need to be learned, thereby making
the finetuning process more efficient. Formally, consider a pretrained model with a
weight matrix W0 ∈ Rd×k in one of its layers, where k is d or dmlp, the dimension
of MLP. During standard finetuning, the weight matrix is updated to a new matrix
W = W0 + ∆W, where ∆W represents the learned update. In LoRA, instead of
learning a full-rank update ∆W, the update is approximated as a product of two
low-rank matrices:

∆W = AB,

where A ∈ Rd×r and B ∈ Rr×k are the low-rank matrices, and r is the rank, typically
chosen such that r ≪ min(d, k). This low-rank decomposition significantly reduces
the number of parameters that need to be learned during finetuning, from d × k to
r × (d+ k).

During finetuning with LoRA, the pretrained weights W0 remain frozen, and
only the low-rank matrices A and B are updated. The modified weight matrix during
the forward pass is then:

W = W0 +AB.

By constraining the update ∆W to be low-rank, LoRA reduces both the memory
footprint and the computational cost of finetuning, making it feasible to adapt very
large models on limited hardware.
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LoRA has been successfully applied to various LLMs and has proven effective in
scenarios where fine-tuning large models is computationally prohibitive. Numerous
LoRA variants have been proposed in recent years (Liu et al., 2024b; Zhang et al.,
2023; Kopiczko et al., 2024). In this thesis, we focus on the standard LoRA approach
for training large models (as discussed in §5.1), as it continues to demonstrate strong
effectiveness and efficiency compared to other baselines in recent benchmarks (Hu
et al., 2023).
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Related Work

The field of LLMs is rapidly advancing, making explainability not only a tool for
understanding these complex systems but also essential for their improvement. This
section categorizes current explainability approaches, highlights the challenges in
ethical and controllable generation, and proposes research questions discussed in
Chapter 4 and 5.

Categorization of Methods We present a structured categorization for the explain-
ability methods and their applications in Figure D.1. We divide these into two broad
domains: Local Analysis and Global Analysis, aligned with recent research in ex-
plainability (Zhao et al., 2023b; Luo and Specia, 2024). Local Analysis covers fea-
ture attribution and transformer block analysis, delving into detailed operations of
models. Global Analysis, on the other hand, includes probing-based methods and
mechanistic interpretability, offering a comprehensive understanding of model be-
haviors and capacities. Beyond understanding, we also explore applications of these
insights in enhancing LLM capabilities, focusing on model editing, capability en-
hancement, and controlled generation.

3.1 Explainability for Large Language Models

3.1.1 Local Analysis

Local explanations in LLMs aim to elucidate how models generate specific predic-
tions, such as sentiment classification or token predictions, for a given input. This
section categorizes local explanation methods into two types: feature attribution
analysis and analysis into individual Transformer (Vaswani et al., 2017) components.

Feature Attribution Explanation

Feature attribution, a local method for explaining a prediction, analysis quantifies
the relevance of each input token to a model’s prediction. Given an input text x
with n tokens {x1, x2, ..., xn}, a pre-trained language model f outputs f(x). Attri-
bution methods assign a relevance score R(xi) (Modarressi et al., 2022; Ferrando
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et al., 2022; Modarressi et al., 2023) to each token xi, reflecting its contribution to
f(x). This category includes perturbation-based, gradient-based, and vector-based
methods.

Perturbation-Based Methods. Perturbation-based methods, such as LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017), alter input features to observe
changes in model output. However, this removal strategy assumes input features
are independent and ignores correlations among them. Additionally, models can
be over-confidence even when the predictions are nonsensical or wrong (Feng et al.,
2018). They also face challenges in efficiency and reliability highlighted in (Atanasova
et al., 2020), leading to their diminished emphasis in recent attribution research.

Gradient-Based Methods. One might consider gradient-based explanation meth-
ods as a natural approach for feature attribution. This type of method computes
per-token importance scores (Kindermans et al., 2016) using backward gradient vec-
tors. Techniques such as gradient × input (Kindermans et al., 2017) and integrated
gradients (IG) (Sundararajan et al., 2017) accumulate the gradients obtained as the
input is interpolated between a reference point and the actual input. Despite their
widespread use, one main challenge of IG is the computational overhead to achieve
high-quality integrals (Sikdar et al., 2021; Enguehard, 2023) Their attribution score
has also shown to be unreliable in terms of faithfulness (Ferrando et al., 2022) and
their ability to elucidate the forward dynamics within hidden states remains con-
strained.

Vector-Based Methods. Vector-based analyses, which focus on token representa-
tion formation, have emerged as a key approach. Approaches range from global
attribution from the final output layer to more granular, layer-wise decomposition
of token representations (Chen et al., 2020; Modarressi et al., 2022) Consider de-
composing the ith token representation in layer l ∈ {0, 1, 2, ..., L, L + 1}1, i.e., xl

i ∈
{xl

1, x
l
2, ..., x

l
N}, into elemental vectors attributable to each of the N input tokens:

xl
i =

N∑
k=1

xl
i⇐k (3.1)

The norm (Modarressi et al., 2022) or the L1 norm (Ferrando et al., 2022) of the
attribution vector for the kth input (xl

i⇐k) can be used to quantify its total attribution
to xl

i.
Although several established strategies, such as attention rollouts (Abnar and

Zuidema, 2020; Ferrando et al., 2022; Modarressi et al., 2022), focus on the global
impact of inputs on outputs by aggregating the local behaviors of all layers, they
often overlook the FFN in their analyses due to the inherent nonlinearities. Recent
works have addressed this limitation by approximating and decomposing activation

1l = 0 is the input embedding layer and l = L+1 is the language model head over the last decoder
layer.
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functions, constructing decomposed token representations across layers (Yang et al.,
2023; Modarressi et al., 2023).

Empirical evaluations demonstrate the efficacy of vector-based analysis, high-
lighting the potential of such methods in dissecting each hidden state representation
within transformers. However, vector-based analysis often concentrates on end-to-
end attribution and tends to omit detailed analysis of token representations across
layers. In this thesis, we present novel insights into decomposing token representa-
tions from a layer-wise perspective, as detailed in §4.1.1.

Dissecting Transformer Blocks

(a) (b)

Figure 3.1: Studied role of each Transformer component. (a) gives an overview of
attention mechanism in Transformers. Sizes of the colored circles illustrate the value of
the scalar or the norm of the corresponding vector (Kobayashi et al., 2020). (b) analyzes
the FFN updates in the vocabulary space, showing that each update can be decomposed
to sub-updates corresponding to single FFN parameter vectors, each promoting concepts
that are often human-interpretable (Geva et al., 2022a).

Tracking Transformer block’s component-by-component internal processing can
provide rich information on its intermediate processing, given the stacked architec-
ture of decoder-based language models (Kobayashi et al., 2023). In a transformer
inference pass, the input embeddings are transformed through a sequence of L trans-
former layers, each composed of a multi-head self-attention (MHSA) sublayer fol-
lowed by an MLP sublayer (Vaswani et al., 2017). Equation 2.9 shows the contribu-
tion from the l-th MHSA and MLP sublayers output to the residual stream2. While
studies have frequently analyzed individual Transformer components (Kobayashi
et al., 2020; Modarressi et al., 2022), the interaction between these sublayers is
less explored, presenting an avenue for future research.

2For brevity, bias terms and layer normalization (Ba et al., 2016) are omitted, as they are nonessen-
tial for most of analysis.
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Analyzing MHSA Sublayers. Attention mechanisms in MHSA sublayers are instru-
mental in capturing meaningful correlations between intermediate states of input
that can explain the model’s predictions. Visualizing attention weights and utiliz-
ing gradient attribution scores are two primary methods for analyzing these sublay-
ers (Zhao et al., 2023b). Many studies have analyzed the linguistic capabilities of
Transformers by tracking attention weights (Abnar and Zuidema, 2020; Katz and
Belinkov, 2023; Kobayashi et al., 2023). For instance, attention mechanisms typi-
cally prioritize specific tokens while diminishing the emphasis on frequent words or
special tokens, a phenomenon observable through norm-based analysis metrics, as
illustrated in Figure 3.1(a) (Kobayashi et al., 2020). In the gradient analysis, some
methods calculate gradients as partial derivatives of model outputs with respect to
attention weights (Barkan et al., 2021), while others use integrated gradients, which
are cumulative versions of these partial derivatives (Hao et al., 2021). Generally,
these combined approaches, which integrate attention metrics with gradient infor-
mation, tend to outperform methods using either metric in isolation.

Analyzing MLP Sublayers. More recently, a surge of works has investigated the
knowledge captured by the feed-forward network (FFN) layers (Geva et al., 2022a;
Dai et al., 2022c). These layers, which consume the majority of each layer’s param-
eter budget—8d2 compared to 4d2 for self-attention layers (where d represents the
model’s hidden dimension)—function similarly to key-value memory systems (Geva
et al., 2021). In this context, each “key” corresponds to specific textual patterns
learned during training, while each “value” generates a distribution over the out-
put vocabulary (Geva et al., 2021). Together, they operate as “neurons,” scaling and
adding their contributions back to the residual stream to shape the learned represen-
tations (Dai et al., 2022a). Figure 3.1(b) illustrates the outputs of the FFN layers,
demonstrating how each update within these layers can be decomposed into sub-
updates linked to individual parameter vectors, which often encode interpretable
concepts (Geva et al., 2022a). Additionally, there is growing interest in input-
independent methods that analyze model parameters directly, bypassing the need
for a forward pass (Dar et al., 2023). In this thesis, we present a detailed case study
identifying specific value vectors associated with bias behavior in LLMs, as discussed
in §4.1.

3.1.2 Global Analysis

In contrast to local analysis, which focus on elucidating individual model predictions,
global analysis aims to understand and explain the knowledge or linguistic proper-
ties encoded in the hidden state activations of a model (Luo and Specia, 2024). This
section explores two primary approaches to global analysis: probing methods and
mechanistic interpretability (Transformer Circuits, 2022), an emerging perspective
that seeks to reverse engineer the inner workings of deep neural networks.
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Probing-Based Method

Self-supervised pre-training endows models with extensive linguistic knowledge, de-
rived from large-scale training datasets. Probing-based methods are employed to
capture the internal representations within these networks. This approach involves
training a classifier, known as a probe, on the network’s activations to distinguish
between various types of inputs or outputs. In the following sections, we will dis-
cuss studies related to probing, categorized based on their objectives, whether it be
probing for semantic knowledge or analyzing learned representations.

Probing Knowledge. LLMs trained on extensive text corpora, are recognized for
their ability to encapsulate context-independent semantic and factual knowledge
accessible via textual prompts (Petroni et al., 2019). Research in this area primar-
ily focuses on formulating textual queries to extract various types of background
knowledge from language models (Hewitt and Manning, 2019a; Peng et al., 2022).
Interestingly, probes can sometimes unearth factual information even in scenarios
where language models may not reliably produce truthful outputs (Hernandez et al.,
2023a).

Probing Representations. LLMs are adept at developing context-dependent knowl-
edge representations. To analyze these, probing classifiers are applied, typically in-
volving a shallow classifier trained on the activations of attention heads to predict
specific features. A notable study in this area involved training linear classifiers to
identify a select group of attention heads that exhibit high linear probing accuracy
for truthfulness (Li et al., 2024). This research revealed a pattern of specializa-
tion across attention heads, with the representation of “truthfulness” predominantly
processed in the early to middle layers, and only a few heads in each layer show-
ing standout performance. Such insights pave the way for exploring more complex
representations. For instance, research by Li et al. (2023a) has revealed nonlin-
ear internal representations, such as board game states, in models that initially lack
explicit knowledge of the game or its rules.

Mechanistic Interpretability

Mechanistic interpretability seeks to comprehend language models by examining in-
dividual neurons and their interconnections, often conceptualized as circuits (Trans-
former Circuits, 2022; Zhao et al., 2023b). This field encompasses various ap-
proaches, which can be primarily categorized into three groups: circuit discovery,
causal tracing, and vocabulary lens. Each of these approaches offers distinct per-
spectives and insights into the mechanisms of language models.

Circuit Discovery. The circuit-based mechanistic interpretability approach aims to
align learned model representations with known ground truths, initially by reverse-
engineering the model’s algorithm to fully comprehend its feature set (Chughtai
et al., 2023). A prominent example of this approach is the analysis of GPT-2 small
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(Radford et al., 2019b), where a study identified a human-understandable subgraph
within the computational graph responsible for performing the indirect object identi-
fication (IOI) task (Wang et al., 2022). In IOI, sentences like “When Mary and John
went to the store, John gave a drink” are expected to be completed with “Mary”.
The study discovered a circuit comprising 26 attention heads – just 1.1% of the total
(head, token position) pairs – that predominantly manages this task. This circuits-
based mechanistic view provides opportunities to scale our understanding to both
larger models and more complex tasks, including recent explorations into In-Context
Learning (ICL) (Halawi et al., 2023; Hendel et al., 2023; Todd et al., 2023; Wang
et al., 2023b).

Causal Tracing. The concept of causal analysis in machine learning has evolved
from early methods that delineate dependencies between hidden variables using
causal graphs (Pearl et al., 2000) to more recent approaches like causal mediation
analysis (Vig et al., 2020). This newer method quantifies the impact of intermediate
activations in neural networks on their output (Meng et al., 2023a). Specifically,
Meng et al. (2023a) assesses each activation’s contribution to accurate factual pre-
dictions through three distinct operational phases: a clean run generating correct
predictions, a corrupted run where predictions are impaired, and a corrupted-with-
restoration run that evaluates the ability of a single state to rectify the prediction
(Meng et al., 2023a). Termed as causal tracing, this approach has identified crucial
causal states predominantly in the middle layers, particularly at the last subject po-
sition where MLP contributions are most significant. This finding underscores the
role of middle layer MLPs in factual recall within LLMs.

Vocabulary Lens. Recent work has suggested that model knowledge and knowl-
edge retrieval may be localized within small parts of a language model (Geva et al.,
2021) by projecting weights and hidden states onto their vocabulary space To ana-
lyze the components in vocabulary space, we read from each token component hl

t at
layer l by projecting with the language model head in Equation 2.11:

plt = softmax
(
ϕ(LNfinal(h

l
t))
)

(3.2)

where LNfinal stands for layer normalization before the LM head. Belrose et al.
(2023) refines model predictions at each transformer layer and decodes hidden
states into vocabulary distributions based on this method. Exploring this avenue
further, Geva et al. (2022a) illuminated the role of transformer feed-forward lay-
ers in predictions, spotlighting specific conceptual emphases via FFN sub-updates.
There is also a growing interest in input-independent methodologies, where model
parameters are interpreted directly, bypassing a forward pass (Dar et al., 2023).

Augmenting projection-focused interpretations, Din et al. (2023a) first unveiled
a feasible application for such projections, suggesting early exit strategies by treat-
ing hidden state representations as final outputs. Geva et al. (2023) pinpointed two
critical junctures where information propagates to the final predictions via projec-
tions and attention edge intervention. While much of the focus has been on how
hidden states relate to model outputs, recent works have also highlighted the roles
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of individual tokens, revealing that their contributions through attention outputs are
laden with rich semantic information (Ram et al., 2023; Katz and Belinkov, 2023).

3.2 Leveraging Explainability

In this section, we explore how explainability can be leveraged as a tool to debug
and enhance models. While numerous approaches aim to improve model perfor-
mance through fine-tuning or retraining, our focus is on methods that are explicitly
grounded in model explainability. These approaches not only provide insights into
the internal workings of the models but also guide targeted improvements. Several
works discussed here serve as baseline methods, as detailed in Chapter 5.

3.2.1 Parameter Space Editing

Despite the ability to train proficient LLMs, the methodology for ensuring their rele-
vance and rectifying errors remains elusive. In recent years, there has been a surge
in techniques for editing LLMs. The goal is to efficiently modify the knowledge or
behavior of LLMs within specific domains without adversely affecting their perfor-
mance on other inputs (Yao et al., 2023).

Hypernetwork Knowledge Editors. This type of knowledge editors includes memory-
based model and editors with additional parameters. Memory-based models store all
edit examples explicitly in memory based on the explainability finding of key-value
memories inside the FFN (Section 3.1.1). They can then employ a retriever to extract
the most relevant edit facts for each new input, guiding the model to generate the
edited fact. SERAC (Mitchell et al., 2022), for instance, adopts a distinct counter-
factual model while leaving the original model unchanged. Editors with additional
parameters introduce extra trainable parameters within LLMs. These parameters are
trained on a modified dataset while the original model parameters remain static. For
example, Huang et al. (2023) integrates one neuron (patch) for one mistake in the
last layer of the FFN of the model, which takes effect only when encountering its
corresponding mistake.

Locate-Then-Edit. The locate-then-edit paradigm first identifies the parameters
corresponding to the specific knowledge and then modifies them by directly updat-
ing the target parameters. The Knowledge Neuron (KN) method (Dai et al., 2022c)
introduces a knowledge attribution technique to pinpoint the “knowledge neuron”
(a key-value pair in the FFN matrix) that embodies the knowledge and then updates
these neurons. ROME (Meng et al., 2023a) and MEMIT (Meng et al., 2023b) ap-
ply causal tracing (Section 3.1.2) to locate the editing area. Instead of modifying
the knowledge neurons in the FFN, ROME alters the entire matrix. Based on these
two methods, PMET (Li et al., 2023b) involves the attention value to achieve better
performance.

20



Chapter 3. Related Work

3.2.2 Enhancing Model Performance

While LLMs demonstrate versatility in various NLP tasks, insights from explainabil-
ity can significantly enhance these capabilities. This section highlights two key tasks
where explainability has shown considerable impact in recent work: improving the
utilization of long text (Xiao et al., 2023; Liu et al., 2023; Pope et al., 2022) and en-
hancing the performance of In-Context Learning (ICL) (Hendel et al., 2023; Halawi
et al., 2023; Wang et al., 2023b).

Improving Context Length Capacity The optimization of handling long text aims
to enhance the ability of LLMs to capture and effectively utilize content within longer
contexts. This is particularly challenging because LLMs tend to struggle with gener-
alizing to sequence lengths longer than what they were pretrained on, such as the
4K limit for Llama-2 (Touvron et al., 2023b). Beltagy et al. (2020) maintains a fixed-
size sliding window on the key-value (KV) states of the most recent tokens. While
this approach ensures constant memory usage and decoding speed after the cache
is initially filled, it faces limitations when the sequence length exceeds the cache
size (Liu et al., 2023). An innovative solution proposed by Xiao et al. (2023) takes
advantage of the MHSA explanations (Section 3.1.1) in LLMs, which allocates a sig-
nificant amount of attention to the initial tokens. They introduce StreamingLLM, a
simple and efficient framework that allows LLMs to handle unlimited text without
fine-tuning. This is achieved by retaining the ”attention sink,” which consists of sev-
eral initial tokens, in the KV states. The authors also demonstrate that pre-training
models with a dedicated sink token can further improve streaming performance.

Improving In-Context Learning In-context Learning (ICL) has emerged as a pow-
erful capability alongside the development of scaled-up LLMs (Brown et al., 2020b).
ICL stands out because it doesn’t require extensive updates to the vast number of
model parameters and relies on human-understandable natural language instruc-
tions (Dong et al., 2023). As a result, it offers a promising approach to harness the
full potential of LLMs. With mechanistic interpretability (Section 3.1.2), Wang et al.
(2023b) reveal that label words in the demonstration examples function as anchors,
which can be used to improve ICL performance with simple anchor re-weighting
method. Halawi et al. (2023) study harmful imitation in ICL through vocabulary
lens to inspect a model’s internal representations (Section 3.1.2), and identify two
related phenomena: overthinking and false induction heads, the heads in late lay-
ers that attend to and copy false information from previous demonstrations, and
whose ablation improves ICL performance. Furthermore, using causal tracing (Sec-
tion 3.1.2), Hendel et al. (2023); Todd et al. (2023) find that a small number atten-
tion heads transport a compact representation of the demonstrated task, which they
call a task vector or function vector (FV). These FVs can be summed to create vectors
that trigger new complex tasks and improve performance for few-shot prompting
(Todd et al., 2023).
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Improving Model Efficiency Early exit strategies in language models are often
explored to improve efficiency. Several works focus on enhancing inference effi-
ciency by terminating computation at dynamically-decided earlier layer outputs (Xin
et al., 2020; Schuster et al., 2022). A common approach for adapting intermediate
layer output to language modeling involves training an affine transformation (Bel-
rose et al., 2023; Din et al., 2023b). Early exit strategies have also been explored for
interpretability, analyzing the linearity properties of transformer components (Geva
et al., 2023; Hernandez et al., 2023b). However, the utilization of intermediate layer
output during training remains largely unexplored. A recent work (Elhoushi et al.,
2024) applies layer dropout and an early exit loss to increase the accuracy of early
exits, but its primary focus is still on inference efficiency. To the best of our knowl-
edge, our work is the first to utilize early exit logits together with the final layer
logits to incorporate task-aware representations from intermediate layers into the
loss calculation.

3.2.3 Controllable Generation

Despite the superior performance of large language models in text generation, they
often struggle with producing factually accurate and controllable (safe) content Li
et al. (2024). Introducing explainability methods offers the potential to develop
inference-time techniques that enhance model factuality, calibration, and controlla-
bility, aligning outputs more closely with human preferences (Luo and Specia, 2024).

Reducing Hallucination Hallucinations in LLMs refer to generated content not
based on training data or facts, various factors such as imperfect learning and decod-
ing contribute to this (Ji et al., 2023). To mitigate hallucinations, initial approaches
used reinforcement learning from human feeback (Ouyang et al., 2022) and distilla-
tion into smaller models such as Alpaca (Li et al., 2023c). Leveraging explainability
provides a significantly less expensive way to reduce hallucination, enjoying the ad-
vantage of being adjustable and minimally invasive. For example, Li et al. (2024)
use as few as 40 samples to locate and find “truthful” heads and directions through
a trained probe (Section 3.1.2). They propose inference-time intervention (ITI), a
computationally inexpensive strategy to intervene on the attention head to shift the
activations in the “truthful” direction, which achieves comparable or better perfor-
mance toward the instruction-finetuned model.

Logit-Level Arithmetic Operations at the logit level have proven effective in steer-
ing the output of LLMs (Luo and Specia, 2024). From a multi-model perspective,
there has been a growing body of work focusing on “mixturing” the abilities of dif-
ferent trained models in line with the Mixture-of-Experts framework (Shazeer et al.,
2017; Jiang et al., 2024). Liu et al. (2021); Gera et al. (2023) have also shown
the effectiveness of ensembling logits from multiple LMs. From a single model per-
spective, contrasting logits from different layers of a model (Chuang et al., 2024;
Gera et al., 2023) has shown promising performance improvements in the trustwor-
thiness of generation and addressing the resource-intensive issues of larger models
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(Liu et al., 2024a). In §5.1 of our thesis, we proposed a new tuning method built
upon logit-level arithmetic and follows the line of ensembling logits, focusing not
on a multi-model perspective but rather on utilizing the late layers’ outputs within
a single model for tuning. This approach has been considered only during inference
in previous work.

Ethical Alignment

As research on AI fairness gains increasing importance, efforts have been made to
detect social bias (Fleisig et al., 2023; An and Rudinger, 2023) and suppress tox-
icity (Gehman et al., 2020; Schick et al., 2021) in language models (LMs). Many
previous debiasing methods (Qian et al., 2022) have focused on constructing anti-
stereotypical datasets and subsequently retraining the LM from scratch or conduct-
ing fine-tuning. While effective, these approaches entail high costs for both data
construction and model retraining. Additionally, they are susceptible to catastrophic
forgetting when fine-tuning is applied (Zhao et al., 2023b). Despite the growing
focus on fairness, limited work has addressed the interpretability aspect of debiasing
research. A recent study by dev (2023) explores the interpretation and mitigation of
social biases in large language models (LLMs) by introducing the concept of social
bias neurons. Inspired by the gradient-based attribution method, Integrated Gradi-
ents (IG) (Section 3.1.1), the authors propose an interpretable technique termed
Integrated Gap Gradient (IG2). This method identifies social bias neurons by back-
propagating and integrating the gradients of the logits gap for a selected pair of
demographics3. By identifying these neurons, they are able to suppress their activa-
tions to mitigate bias.

Extensive experiments have demonstrated the effectiveness of this approach in
masked language models (MLMs) and have indicated its potential for ethical align-
ment. However, few studies have addressed performance in open-generation models
for causal language modeling (CLM). In this work, we aim to provide further insights
(§4.3.1) and explore new strategies (§5.2) to tackle this challenge.

3Demographics include attributes such as gender, sexuality, and occupation. Nine common demo-
graphic categories are collected, and pairs of demographics are selected to reveal fairness gaps (Liu
et al., 2024c).
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The Hidden Representations of Large
Language Models

In this chapter, we present key observations from our experiments, focusing on
the hidden representations within the reasoning processes of large language mod-
els. Our objective is to apply various techniques to extract meaningful and human-
understandable concepts from these representations. We also highlight interesting
patterns and attributes that emerge across different layers of the model, some of
which provide valuable insights that can enhance the methods discussed in Chapter
5.

4.1 Concept Extraction in the Vocabulary Space

In this section, we demonstrate how to extract semantically meaningful informa-
tion from hidden representations using pretrained vocabulary heads, as discussed in
§2.3.2. For a pretrained language model head, it is possible to examine the token
representation process not only at the output layer but across every layer of hidden
representations. Additionally, this head can be used to probe other representations,
such as those produced by the attention heads (§3.1.1) or MLP neurons (§3.1.1).
For our analysis, we primarily use the pretrained 125M GPT-2 model (Radford et al.,
2019a) as a representative of smaller LLMs, and the 7B LLaMA model (Touvron
et al., 2023a) as an example of medium to large models.

4.1.1 The Evolving Token Expressions

We analyze three types of prompts in our study. The first is knowledge extraction
prompts (Meng et al., 2023a), which follow a (subject, relation, object) format and
are designed to extract the correct answer for the object. The second type is the IOI
(Indirect Object Identification) prompt (Wang et al., 2022), where sentences such
as:
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Prompt: When Mary and John went to the store, John gave a drink

to

Target: Mary

The sentence should be completed with Mary because it is the linguistically ap-
propriate completion. This prompt allows for an interpretable algorithmic under-
standing. Lastly, we include gender bias (occupation) prompts (Hernandez et al.,
2023b), which are structurally similar to knowledge extraction prompts but focus
on detecting inherent biases within the model’s outputs. Our analysis aims to ad-
dress three primary questions:

1. Which layer of the model contributes the most (§4.1.1)?

2. Which Transformer module (e.g., attention or FFN) plays the largest role (§4.1.1)?

3. Which token representation is the most influential in the final prediction (§4.1.1)?

Which layer contributes the most?

We first show that the token expression process inside the language models is in-
volving and individual tokens are different. The following figures show logit lens
(Nostalgebraist, 2020) for each layer outputs for the knowledge extraction prompt,
example as:

Prompt: The Eiffel Tower is located in the city of

Target: Paris

Figure 4.1: Projection of hidden representations onto the vocabulary space using the
method from nostalgebraist (2021) for the knowledge extraction prompt (Meng et al.,
2023a) at each token position. The color of each pixel represents the probability of a
token when projected onto the vocabulary space. Annotations indicate the predicted
token when its probability exceeds 0.2.
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The color of the pixel represents the probabilities of that layer output for the
most confident token, with annotations indicating the output token when the prob-
ability exceeds 0.2. Heatmaps for other types of prompts are included in Appendix
B.1.

Model Uncertainties and Early Exit We observed that the model typically exhibits
confident predictions in the later layers (for a 32-layer 7B model, this usually refers
to layers after the 18th to 20th). As shown in the Figure 4.1, for tokens such as
Tower following Eiffel, and Paris following in the city of..., the model as-
signs a large probability score, indicating high confidence in predicting these tokens.
Notably, once the probability of a token becomes high, it often remains high for the
subsequent layers. Recent works (Elhoushi et al., 2024; Corro et al., 2024) have
demonstrated that this phenomenon can serve as evidence for early exit strategies,
which can significantly accelerate LLM inference by halting computation once confi-
dence thresholds are met.

Figure 4.2: The layer-wise probabilities and ranks of the target token in the vocabulary
space. The left panel shows the knowledge extraction prompt (Meng et al., 2023a), the
middle panel shows the IOI prompt (Wang et al., 2023a), and the right panel shows the
gender bias prompt (Hernandez et al., 2023b). We observe a synchronous trend between
rank and probability: as the token’s rank improves (with rank 0 being the highest), the
confidence in predicting that token, reflected by its probability, increases significantly.

Uncertainty is another important metric for measuring the confidence of an LLM
(Xiong et al., 2024). In addition to the probability of the most likely token, metrics
such as the rank of that token and the entropy of the output distribution can also
provide valuable insights. These measures are expected to follow similar trends
as the probability analysis discussed in §4.1.1. For example, a gender bias prompt
might be:

Prompt: What gender (men or women) are pilots associated with?

They are associated with

Target: men

In Figure 4.2, we demonstrate that the rank and probability of the target token
often follow a synchronous trend: as the token’s rank improves (with rank 0 being
the top rank), the confidence in predicting that token (reflected by its probability)
increases significantly. However, we also observe that for certain datasets, the token
rank can rise to a high position in the early layers, even when the probability remains
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low. This suggests that the model begins to capture the correct output representation
early on, with subsequent layers refining that representation.

Given the low uncertainty at specific layers, it raises the question of whether
some early layer outputs could already serve as final predictions. We observe cases
where later layers interfere with earlier, potentially correct, representations. For in-
stance, in Figure B.1, the last two token positions exhibit high confidence at layer
29 in the IOI task, correctly identifying the target token. Yet, in the subsequent two
layers, the confidence diminishes. This highlights the potential of selectively utiliz-
ing outputs from certain layers that demonstrate high confidence with the correct
prediction, allowing the model to learn which layer’s output it should trust. This
idea will be further explored in both §4.2 and §C.

Which Transformer module contributes the most?

Transformer-based language models typically consist of attention outputs and MLP
outputs, both sequentially written to the residual stream. To better understand the
contributions of different layers, we explored the specific impact of these compo-
nents—particularly the Attention and MLP modules.

We performed an ablation analysis on all modules at every token position given
a prompt. Several methods can be employed for ablation, such as zeroing out the
components (in the residual stream dimension, not the head dimension), mean ab-
lation (Wang et al., 2023a), and corruption by patching, as summarized by (Zhang
and Nanda, 2024). For this study, we utilized zero ablation as a straightforward ap-
proach to examine the effects of these modules. We applied this analysis to a prompt
addressing gender bias, considering several ablation scenarios:

1. Ablation of the attention output to the residual stream.

2. Ablation of the MLP output to the residual stream.

3. Ablation of both attention and MLP outputs (equivalent to ablating an entire
layer).

4. For LLaMA-type models (Touvron et al., 2023a,c), where attention and MLP
updates occur sequentially, we also included the ablation of the attention out-
put to the MLP—meaning the attention output updates the residual stream but
is excluded from the MLP input.

The evaluation metric was the logit difference of the target token; a larger value
indicated a greater effect of the ablation on that position. The four ablation scenarios
are illustrated in Figure 4.3.

Our findings suggest that the most significant effects of the attention and MLP
modules are concentrated in the early layers. This implies that the final token pri-
marily completes its extraction of information from preceding tokens in the early to
middle layers. In contrast, at the position of the final token, the influence of the at-
tention output becomes more pronounced in the later layers. This behavior is likely
due to the nature of the gender bias task, which does not require substantial MLP
activation to retrieve pre-trained knowledge (An and Rudinger, 2023), as is typically
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Figure 4.3: Zeroing ablation (Wang et al., 2023a) applied to all modules at each token
position for the gender bias prompt (Hernandez et al., 2023b). The evaluation metric
used is the logit difference of the target token before and after ablation; a larger value
indicates a greater effect of the ablation on the corresponding position for the ablated
module.

necessary in knowledge extraction tasks (Hernandez et al., 2023b). Instead, the task
relies more heavily on attention mechanisms to finalize contextual understanding.

As the scale of large language models (LLMs) continues to grow, tuning these
models has become increasingly computationally expensive and memory-intensive,
posing significant challenges for deployment in industrial settings. Many applica-
tions focus on finetuning pretrained models on task-specific data using methods such
as low-rank approximation (LoRA) (§2.3.3). However, these methods often struggle
to match the performance of full parameter tuning in large-scale finetuning tasks, as
LoRA’s representational capacity is inherently limited by its low-rank structure (Pan
et al., 2024). Recent research has aimed to identify task-relevant subsets of parame-
ters in pretrained models for full-rank finetuning while reducing computational costs
(Panigrahi et al., 2023; Zhang et al., 2024). We leave the exploration of integrating
the intrinsic low-rank characteristics with precise tuning of specific sparse effective
parameters in future work.

Which token representation contributes the most?

While ablation analysis provides insights into the contributions of different modules,
it does not offer a precise measurement of contributions at the individual token
level (Zhang and Nanda, 2024). Inspired by language model attribution analysis,
as introduced in §3.1.1, we propose to investigate which tokens contribute the most
through layer-wise decomposed vector representations, as opposed to traditional
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Figure 4.4: Decomposition at the final token position of the preceding token represen-
tations for the knowledge extraction prompt (Meng et al., 2023a). The color of each
pixel represents the probability of that token when projected onto the vocabulary space
using the method from nostalgebraist (2021). Annotations indicate the predicted token
when the probability exceeds 0.2.

attribution analysis that focuses on end-to-end analysis (Sundararajan et al., 2017;
Kobayashi et al., 2020; Sikdar et al., 2021; Modarressi et al., 2022; Ferrando et al.,
2022).

In transformer-based language models, the computation of attention is inher-
ently linear, allowing us to decompose the attention output by the token represen-
tations it attends to (in autoregressive models, these are the preceding tokens). The
derivation of the attention decomposition can be found in Appendix B.3. However,
the MLP module presents a challenge due to its activation function, which intro-
duces nonlinearity, complicating the decomposition of its outputs into individual
token contributions. Inspired by recent linear approximation methods (Yang et al.,
2023; Modarressi et al., 2023), we can approximate the MLP output in terms of to-
ken representations, thereby enabling attribution analysis on the tokens for a given
prompt, particularly at the position of the final token.

After the attention module, tokens are processed through a 2-layer multilayer
perceptron (MLP) with a non-linear activation function σact:

zlMLP = σact(z̃
l
iW

1
K︸ ︷︷ ︸

ζli

)W2
V (4.1)

where z̃li is the normalized input. The bias term is omitted for simplicity, which is
common in many state-of-the-art LLMs (Touvron et al., 2023c; Team et al., 2024).

To continue the decomposition through the non-linear activation, we approxi-
mate σact using a piecewise linear function, assuming monotonicity and σact(0) = 0
(Modarressi et al., 2023). The approximation is applied elementwise, with the slope
θt calculated as:

θt =
σact(z

(t))

z(t)
(4.2)

where (t) denotes the dimension of the input vector z. This approximation allows
for a decomposition that preserves the token representation. Thus, the decomposed
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FFN output becomes:

zlMLP,i =
N∑
k=1

θ(ζ
l
i) ⊙ ζ li⇐k (4.3)

This approach enables the decomposition of token representations across lay-
ers, allowing for token-level attribution throughout the entire model. Combining
this with the logit lens technique (nostalgebraist, 2021), we applied the linear ap-
proximation to the 7B LLaMA model (Touvron et al., 2023a). The results, shown
in Figure 4.4, are consistent with prior analyses when performing decomposition
at the last token position (i.e., using all preceding token representations to predict
the next token) using a knowledge extraction prompt as an example. Notably, we
observe that the representation Paris is primarily derived from the tokens Eiffel

Tower and is activated in the later layers. This finding aligns with our intuition
that the model infers Paris from the most representative token in the prompt. The
heatmaps for other types of decomposed representations are included in Appendix
B.2.

4.1.2 Concepts in the Representation Space

Figure 4.5: The Representation (Activation) Space map at the 25 layer of LLaMA3-8B
(left) and LLaMA3-8B-Instruct (right) with the concepts from PaCE-1M. The visualiza-
tion is the first two dimensions of UMAP of the concept vectors. We query GPT-4 for 15
concepts that are semantically different from each other and plot their clusters onto the
map. We observe that concepts of similar semantics are clustered together, indicating
that the activation space has clear semantic structures.

Recent work has shown that certain directions in the representation (activation)
space of LLMs are associated with specific semantic concepts (cf. §3.1.2 and 3.1.2).
In an ideal scenario, we would be able to manipulate the representation space us-
ing these identified linguistic directions. However, existing studies provide only a
limited number of concept directions, making it difficult to steer or decompose rep-
resentations that encompass all linguistic concepts.
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Building on a recent study by Luo et al. (2024), which introduces a large dataset
called PaCE-1M, we aim to investigate the geometry and potential applications of
the representation space. The PaCE-1M dataset consists of 40,000 concepts, each
represented by approximately 30 prompts that describe various scenarios generated
by GPT-4. Further details on the dataset are provided in Appendix A.2.

Following the preprocessing steps described in Luo et al. (2024), for each con-
cept ti (out of a total of m concepts), we extract a direction vl

i from the activations of
its contextual stimuli at the l-th decoder layer. This results in a dictionary Dl ∈ Rd×m

per layer (details in Appendix A.2). We explore the concept representations in the
activation space of two advanced models: the recent LLaMA3-8B model and its chat-
aligned version, LLaMA3-8B-Instruct (Dubey et al., 2024).

We begin by examining the semantic structure of the PaCE-1M dataset concepts
using UMAP. Figure 4.5 visualizes the first two dimensions, with 15 concept queries
generated by GPT-4 that are semantically distinct. The concept vectors are plotted,
and semantically similar concepts form clusters, indicating that the activation space
exhibits clear semantic structures.

Figure 4.6: The zoom-in version around the
target concept Love. The visualization is the
first two dimensions of UMAP of the concept
vectors. We observe similar concepts such as
‘goodness’, ‘thoughtful’, ‘lovable’ are clustered
closely together.

We further observe that in the
instructed-tuning version of the model
(LLaMA3-8B-Instruct), the concept em-
beddings are more widely dispersed
across the concept map compared to
LLaMA3-8B. This suggests that the ad-
ditional alignment and instruction tun-
ing have strengthened the model’s abil-
ity to distinguish between aligned and
unaligned contexts. This observation
aligns with findings from recent red-
teaming literature (Qi et al., 2023,
2024).

Zooming in on specific concepts, we
examine Love in Figure 4.6 for LLaMA3-
8B. Similar concepts, such as ‘goodness’,
‘thoughtfulness’, and ‘lovable’, cluster
closely together. Furthermore, a clear
boundary exists between concepts re-
lated to Love and those related to Hate

(the blue cluster), even though they are proximate in the overall concept map.
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4.2 The Predictive Power of Late Layer Representa-
tions

Figure 4.7: Tuning loss curves for LLaMA2-7B
(Touvron et al., 2023c) on ARC dataset (Clark
et al., 2018). Above shows the loss curve of
late layers when optimizing the loss based on
the last layer output when late layers are opti-
mized implicitly; Below shows the loss curves
when optimizing the loss on each late layer
output explicitly.

Transformer-based LLMs process se-
quences of input tokens by representing
them as vectors and transforming these
vectors through multiple layers of trans-
formers Vaswani et al. (2017). Previ-
ous section has demonstrated that these
intermediate hidden states can carry
meaningful information (see §4.1), and
prior research has shown that lever-
aging these hidden states during de-
coding can improve trustworthiness (Li
et al., 2024; Chuang et al., 2024)
and reasoning capabilities (O’Brien and
Lewis, 2023). However, how to ef-
fectively utilize these intermediate lay-
ers during training remains unexplored.
While each layer transformation creates
new token representations added to the
residual stream (see §2.3.1), only the
final layer representations are used to
obtain training loss. Consequently, loss
minimization directly optimizes these fi-
nal representations, leaving hidden rep-
resentations optimized only implicitly,
thereby obscuring their potential predic-
tive power.

We investigate the predictive power
of the late layers representations,1

which have proven to be task-aware in early exiting language models (Schuster
et al., 2022; Din et al., 2023b). We begin by training models on late layers by
applying the pretrained language model heads to each layer’s output to calculate
the loss. Our initial observations show that the training loss curves for each of the
later layers started worse but eventually converged to similar levels, despite not in-
cluding the weights of the subsequent layers (Figure 4.7). Figure 4.8 demonstrates
that the trained “models” at these layers can even provide complementary evalua-
tion results. These findings suggest that the late layers possess significant predictive
potential. Given the overparameterization typical in large language models (Gao
et al., 2023), the model can adapt effectively to downstream tasks even with fewer
parameters.

We demonstrate that this observation of the predictive power in the later layers

1“Late” layers often refer to those closer to the output, e.g., layers 25-32 in a 32-layer LLaMA 7B
models in different literatures (Din et al., 2023b; Geva et al., 2023; Meng et al., 2023a).
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Figure 4.8: Intersection of solved problems by tuning loss layers on the AQuA (Ling
et al., 2017), ARC-Challenge (Clark et al., 2018), and GSM8K (Cobbe et al., 2021b)
datasets. The digits in the Venn diagram illustrate the number of overlapping solved
problems and the complementary solved problems for each method.

can be leveraged to design more efficient and effective tuning methods, as discussed
in §5.1.

4.3 The MLP Neuron Theory

Recent work (Geva et al., 2022a, 2023) demonstrates that for each sub-update, the
value vector vi either promotes or suppresses the likelihood of a token w being
generated (Lee et al., 2024):

p
(
w | hℓ +mℓ

iv
ℓ
i , E
)
∝ exp

(
ew · hℓ

)
· exp

(
ew ·mℓ

iv
ℓ
i

)
, (4.4)

where ew is the embedding of the token w. This equation indicates that when
ew ·mℓ

iv
ℓ
i > 0, the likelihood of w increases, and when ew ·mℓ

iv
ℓ
i < 0, the likelihood

decreases. For a detailed derivation, refer to Appendix D.2.
It is important to note that this dot product can be further decomposed. Specifi-

cally, ew · vℓ
i represents a “static” value that does not depend on the input. The influ-

ence of the input on the likelihood of w only becomes apparent when vℓ
i is scaled by

mℓ
i , which is determined by its corresponding key vector kℓ

i and the residual stream
hℓ. Therefore, the projection rℓi = Evℓ

i ∈ R|V| induces a ranking of tokens that are
promoted by the value vector vℓ

i . Tokens with the highest dot products, ew · vℓ
i , are

the most strongly promoted by vℓ
i . In Section 4.3.1, we demonstrate how value vec-

tors that promote bias outputs can be identified by applying projections and linear
probings.

4.3.1 A Case Study in the Bias Neurons

Previous work has conducted mechanistic case studies on detoxifying language mod-
els (Lee et al., 2024). However, few studies have addressed debiasing LLMs from a
mechanistic perspective, as biases encoded in these models are often challenging to
identify and eliminate. For instance, when dealing with toxic information, we can
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identify a set of tokens that consistently refer to toxicity and aim to reduce the prob-
ability of generating these tokens. This approach may serve as a straightforward
solution. In contrast, biases are often more insidious, as the tokens themselves may
appear benign.

For example, consider the prompt: “People from [City] are known for their work
ethic.” While this phrase may seem neutral, it can imply a bias against individuals
from other cities by perpetuating a stereotype. Here, the tokens “People,” “known,”
and “work ethic” are benign, yet the overall sentence structure conveys a biased
viewpoint. Such examples, including those discussed in the gender bias prompt in
§4.1.1, illustrate the complexity of identifying bias in language models. The underly-
ing bias may not be directly tied to specific tokens, making it challenging to address
using traditional debiasing techniques (Liu et al., 2024c).

Probing into the Bias Subspace

We begin by training a linear probe model on a dataset designed to elicit bias or
stereotypical model generation. We use the Steroset (Nadeem et al., 2020) with the
LLaMA2-7B model, which consists of 17,000 sentences measuring model preferences
across gender, race, religion, and profession. The dataset is split 80:20 for training
and validation.

Previous work on truthful direction (Li et al., 2024) and toxic representations
(Lee et al., 2024) focused on training on the residual stream of the last layer, aver-
aged across all timesteps (x̄L−1), as shown below:

P (Attribute|x̄L−1) = softmax(θAttributex̄
L−1), θAttribute ∈ Rd

where Attribute denotes the type of representation being probed. Both analyses
achieved high accuracy when probing the last layer representation. In our analysis
of Steroset, we also achieve an average accuracy of 94% on the validation split.

Thus, we view the probe vector θBias as an aggregate of all relevant signals in
the language model for classifying an input as a biased representation. However,
we extend the probing to all layers of the LLM. Surprisingly, we find that almost
all layers achieve high accuracy when training the probe on the residual stream of
that layer, with a minimum accuracy of 83% in layer 0. This indicates that there
exists a linearly separable direction from the early layers to the final layers, enabling
effective distinction between biased and unbiased representations.
Visualizing the geometry of “bias”. To further investigate the high-dimensional
boundary separating the two classes, we follow Li et al. (2024) and train a second
linear probe pθ′ on the same training set, constrained such that θ′ ⊥ θ. This or-
thogonality to the first truthful direction allows θ′ to best separate the two classes,
maximizing the informativeness of our visualization. We visualize the geometry pro-
jected onto θ and θ′ in Figure 4.9, depicting different layer probing results. In the
second layer on the left, we observe considerable overlap between the two clus-
ters, although the second probe still yields better-than-chance accuracy, suggesting
that the representation of ”bias” lies not only in a single direction but also within a
subspace even in the early layers.
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Figure 4.9: Visualization of the bias representation in the second and last layers of
the LLaMA2-7B model. The left panel displays the overlapping clusters in the second
layer, indicating that bias is represented within a subspace. In contrast, the right panel
reveals distinct clusters in the final layer, suggesting that deeper layers capture bias rep-
resentations in a richer and more nuanced manner. Both probes achieve high accuracy,
reinforcing the complexity of bias representations.

When θ′ is trained on the later layers, we notice increasing accuracy as we
progress deeper into the network. For the probes trained in the last layer, as shown
in Figure 4.9, distinct clusters emerge while both probes maintain 94% accuracy.
This indicates that deeper layers capture additional information not present in ear-
lier layers. The second probe identifies an orthogonal direction in deeper layers that
further separates the classes, demonstrating that deeper layers contain more com-
plex or refined features that enhance class distinction. This also confirms that the
concept of ”bias” is not confined to a single direction but lies in a subspace that
becomes more informative as the LLM processes the input.

Bias Neurons across Layers

Figure 4.10: Dot heatmap illustrating the
top 10 neurons identified by each probe across
different layers. The color of each dot corre-
sponds to the probe layers that bias neurons
associated with.

Given the probe vector θℓ trained on
each layer of an LLM, we can utilize
these vectors to identify weights within
the language model that promote bias.
We start by searching for W ℓ

K (see Equa-
tion 2.5) that foster bias by examining
the value vectors with the highest cosine
similarity to θℓ. For every probe vector,
we compare it with all value vectors in
the model and identify the top k neu-
rons. The resulting dot heatmap is illus-
trated in Figure 4.10, where the color of
each dot represents the neurons identi-
fied by the ℓth probe when k = 10.

Our findings indicate that the iden-
tified bias neurons from different probes
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vary, suggesting that each θℓ contributes to a unique direction for classifying repre-
sentations as biased. Generally, the identified bias neurons are closer to the layer
on which the probe is trained; however, there are exceptions. For instance, the bias
neurons associated with the last layer probe θL are dispersed across various layers
(see the darkest dots and the vertical dot lines). This observation demonstrates that
bias neurons are encoded throughout the layers of pretrained language models.

Previous work has attempted to identify toxic vectors using probes trained on
the last layer and detoxify language models by subtracting these toxic vectors from
the residual stream (Lee et al., 2024). However, as shown in Figure 4.10, this ap-
proach is insufficient since identifying neurons based solely on the last layer rep-
resentations overlooks many bias neurons present in the middle and early layers.
Thus, to effectively remove or suppress undesirable properties in an LLM, it is essen-
tial to consider representations across all layers that contribute to identifying those
attributes. We explore the use of multi-layer probing information to debias language
models in §5.2
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Chapter 5

Improved Refinement and Alignment

5.1 Language Model as Mixture-of-Depths Ensembles

5.1.1 Mixture-of-Depths Framework

Following the observation from §4.2, we introduce the Mixture-of-Depths (MoD)
framework. Unlike “mixture-of-experts” paradigm which utilized different trained
models as experts for processing different input tokens Jiang et al. (2024), We pro-
pose the “mixture” across layers within a single model, where each layer output can
be treated as a single model output. This approach allows us to add diversity and
additional predictive power without significantly increasing parameters by training
a simple gating network for the i-th late layer (§5.1.1).

We focus on tuning large language models. Our framework can be applied on
top of any training methods as the hidden state dimensions remain consistent dur-
ing training. Traditionally, language model heads in LLMs are trained to unembed
embeddings from the last transformer layer. Applying the LM head directly to late
layers during tuning can result in worse initial training performance, as shown in
Figure 4.7. To ensure LM adaptation during tuning without interfering with the
original model predictions, we apply an additional model distillation loss (§5.1.1)
where the last layer output serves as the teacher. This method does not add any
additional trainable parameters and ensures that the late layers adapt to the pre-
dictions. Experiments (§5.1.2) demonstrate that applying MoD tuning consistently
improves performance on arithmetic and commonsense reasoning tasks with a min-
imal increase in trainable parameters (+0.04%). Furthermore, by replacing tradi-
tional trainable modules with MoD, we achieve similar performance with 97% fewer
trainable parameters.

As analysis (§5.1.3), we study the learned patterns by MoD routing (§5.1.3),
evaluate the performance when varying values of k, and explore the tradeoff be-
tween performance and efficiency (§5.1.3, 5.1.3).

Early-Exit for Late Layers

The idea of applying language heads directly to the hidden states of the middle lay-
ers, known as early exit (Teerapittayanon et al., 2016; Elbayad et al., 2020; Schuster
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Figure 5.1: The overall framework of Mixture-of-Depths (MoD), which can be applied
on top of any tuning method like LoRA (Hu et al., 2022). Given a pre-trained LLM
and a tuning dataset, MoD applies trainable normalization Nk and pre-trained language
model heads ϕ(·) to the last k layers {Ln−k+1, . . . , Ln}. Each layer’s output is combined
using learned routing weights to produce the final logits. During training, a auxiliary
teacher-enforced distillation loss Ldistill is applied, where the final layer output serves
as the teacher. MoD utilizes the ensemble logits during inference.

et al., 2022), has proven effective even without a special training process (Kao et al.,
2020). The residual connections (He et al., 2016) in transformer layers allow hidden
representations to evolve gradually, enabling the formation of task-aware represen-
tations without abrupt changes.

Given a sequence of tokens {x1, x2, . . . , xt−1}, the embedding layer first converts
the tokens into a sequence of vectors h(0) = (h

(0)
1 , . . . ,h

(0)
n ), where h

(0)
t ∈ Rd and

d is the hidden state dimension. This sequence h(0) is then processed successively
by each transformer layer, with the output of the j-th layer denoted as h(j). The
vocabulary head ϕ(·) then outputs the logits logitst of the next token xt over the
vocabulary set V:

logits(xt | x<t) = ϕ
(
Np(h

(N)
t ))

)
xt
, xt ∈ V .

Here, Np is the pre-trained normalization module before the vocabulary head. This
method is often considered a form of logit lens (Nostalgebraist, 2020), which uses
the vocabulary head to probe into inner representations. However, the trainable
predictive power of these representations remains unexplored. In §5.1.1, we show
how to combine the train-time predictive power of late layers with final layer logits.

MoD Routing Network

Instead of applying ϕ(·) only on the final layer, we incorporate the predictive power
of late layers into the final prediction. We want to route the most informative repre-
sentation for training to the final logit calculation. Motivated by the MoE framework
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(Fedus et al., 2022; Jiang et al., 2024), the output of the ensemble logits is given by:

k−1∑
i=0

G(x)i · logitsi(x).

Here, G(·)i denotes the k-dimensional output of the routing network for the i-th
expert, and logitsi(·) is the output logits of the i-th late layer. Here, x = Hn−k,
which is the output of the layer before the last k layer. The routing network G(x)i is
implemented by taking the softmax over a linear layer:

G(x) := Softmax(x ·Wg).

The final logits are then obtained by summing the weighted logits from k layers:

ℓ(xt | x<t) =
k−1∑
i=0

G(x)i · logitsi(x)

Additionally, one advantage of the MoD is its potential to improve inference effi-
ciency by avoiding excessive computation when the routing vector is sparse. Follow-
ing Shazeer et al. (2017), we achieve this by applying the softmax over the Top-K
logits of the linear layer:

GTopK(x) := Softmax(TopK(x ·Wg)),

where (TopK(logits))i := logitsi if logitsi is among the top-K coordinates of logits
logits ∈ Rk and (TopK(logits))i := −∞ otherwise.

In our main experiments (§5.1.2), we utilize G(x) to demonstrate the effective-
ness of the MoD framework. We investigate the performance and efficiency trade-
offs of using GTopK(x) in §5.1.3. This exploration allows us to understand how sparse
routing mechanisms can optimize computational resources while maintaining pre-
dictive accuracy.

Late Layers Adaptation by Normalization and Distillation

Directly combining the logits of late layers using the LM head can result in worse
training loss at the start of tuning (Figure 4.7). Previous works (Belrose et al., 2023)
have attempted to learn an affine matrix Aℓ to map hidden states of layer ℓ to the
input space of the LM head. We aim to investigate more efficient adaptation meth-
ods while minimizing interference with model predictions and avoiding excessive
additional trainable parameters.

Inspired by normalization studies in neural networks and the effectiveness of
tuning the normalization module for domain adaptation (Zhao et al., 2023a), we
propose tuning an additional normalization module for each late layer as a simple
yet powerful adaptation method. We set the additional normalization module Nk

to match the architecture of the pretrained Np. For instance, in the LLaMA2 model
(Touvron et al., 2023c), we follow the LayerNorm setting (Ba et al., 2016). The
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learnable parameters in the normalization, γk and βk, are trained individually for
each k-th late layer to ensure specific adaptation for each layer.

Following our assumption in §5.1.1, we treat each of the k − 1 late layers (ex-
cluding the final layer) as smaller models, with the final layer as the larger model
with the most predictive power. We use the final layer as the teacher model to su-
pervise the output of earlier layers for adaptation. We define a teacher-enforced
distillation loss that measures the difference between the predictions of the interme-
diate models and the final layer’s predictions. The distillation loss is computed as
the sum of the KL divergence between each intermediate layer’s output distribution
Pi and the final layer’s output distribution Pn:

Ldistill =
k−2∑
i=0

KL(Pi ∥ Pn),

where Pi is the output distribution of layer i, and Pn is the output distribution of the
final layer. The final loss is then the sum of the task loss and the distillation loss:

LMoD = Ltask + λLdistill,

where λ is a hyperparameter that controls the weight of the distillation loss. By
tuning with the normalization modules and distillation loss, we adapt the k−1 layer
representations to be more suitable for the language modeling task, ensuring their
contributions are aligned with the original task loss.

5.1.2 Experimental Evaluation

We evaluate the MoD framework on two types of language modeling tasks: arith-
metic reasoning and commonsense reasoning. The MoD framework minimally in-
creases trainable parameters and can be integrated with any existing training method,
as the hidden state dimensions remain consistent during training. We use LoRA (Hu
et al., 2022) as our base tuning method, which has been shown to reduce the number
of tunable parameters while maintaining performance comparable to full finetuning.
We define a single LoRA layer as LLoRA. We use two baselines:

1. The model tuned with LoRA excluding the last k layers, denoted as LoRA¬K.
2. The model tuned with LoRA on all layers, denoted as LoRAall.

The notation LoRAall represents the model tuned with LoRA applied to all layers,
including the last k layers which is identical to LoRA¬K +LLoRA × |K| specified in the
tables.

As shown in Table 5.1, MoD consistently improves performance when applied
on top of LoRAall with minimally added parameters. Though MoD is not designed
as an additional training architecture, experiments also demonstrate that it can re-
place the LoRA module while retaining similar or even better performance with 97%
1 fewer trainable parameters. We conduct experiments with LLaMA-1 (Touvron

1The percentage is calculated by the additional parameters introduced by MoD divided by the
additional parameters introduced by LoRAall.
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Table 5.1: Accuracy comparison of MoD built upon LoRA (Hu et al., 2022) for LLaMA-
7B (Touvron et al., 2023a) and LLaMA2-7B (Touvron et al., 2023c) on seven arithmetic
reasoning datasets. We train the models on a single combined dataset follow Hu et al.
(2023) and report averaged performance of three runs with distinct random seeds. The
number in parentheses (%) indicates the percentage of added trainable parameters rel-
ative to the LoRA¬|K| baseline.

Method AddSub AQuA GSM8K MAWPS MultiArith SingleEq SWAMP Avg.

LLaMA-7B

LoRA¬K 38.7 13.4 37.3 56.3 78.2 59.8 42.3 46.6
+ LLoRA × |K| (+10.3%) 41.3 15.4 38.5 58.0 81.0 62.9 44.2 48.8
+ LLoRA × |K| + MoDK (+10.4%) 42.0 15.8 39.1 58.5 81.3 62.9 44.9 49.2
+ MoDK (+0.04%) 41.5 16.1 38.2 58.4 80.7 62.3 43.8 48.7

LLaMA2-7B

LoRA¬K 46.3 20.5 39.7 60.6 81.4 62.0 43.2 50.5
+ LLoRA × |K| (+10.3%) 51.1 24.4 43.6 62.6 84.2 66.9 47.7 54.5
+ LLoRA × |K| + MoDK (+10.4%) 51.2 25.5 43.9 63.1 84.3 67.3 48.0 54.8
+ MoDK (+0.04%) 50.1 24.3 43.4 63.7 82.2 66.8 47.5 54.0

et al., 2023a) and LLaMA-2 (Touvron et al., 2023c) models with 7B parameters.
The weight of the distillation loss λ is set to 0.0001 for all datasets and models, and
the routing network is Gaussian initialized with a standard deviation of 0.02 and a
mean of 0. All experiments are run on NVIDIA A6000 GPUs. Detailed experimental
settings are provided in Appendix C.1.

Arithmetic Reasoning

Arithmetic reasoning includes seven datasets for math word problems: AddSub
(Hosseini et al., 2014), AQuA (Ling et al., 2017), GSM8K (Cobbe et al., 2021a),
MAWPS (Koncel-Kedziorski et al., 2016), SingleEq (Koncel-Kedziorski et al., 2015),
and SVAMP (Patel et al., 2021). Models need to generate chain-of-thought (Wei
et al., 2022) reasoning steps before the final answer. We replicate the experimental
setup from Hu et al. (2023) on a combined dataset of these seven arithmetic rea-
soning tasks with LM-generated chain-of-thought steps (MATH7K) and report scores
on all test sets. We only evaluate the correctness of the final numeric or multiple-
choice answer. Details of the dataset are provided in Appendix A.1.1. For MATH7K,
we set k to 3 for both LLaMA-1 and LLaMA-2 models across all datasets. Note that
different models and datasets might benefit from a different value of k, or we could
dynamically select k during training, which we leave for future research.

The results in Table 5.1 show that the MoD framework consistently improves
performance on arithmetic reasoning tasks when applied on top of LoRA¬K. Fur-
thermore, MoD alone, even with only 0.19% added parameters, provides competi-
tive performance with LoRAall. These results validate our approach of utilizing late
layer during training to enhance model performance in complex reasoning tasks.

Commonsense Reasoning

Commonsense reasoning includes four datasets: the Challenge Set and Easy Set of
ARC (Clark et al., 2018), BoolQ (Clark et al., 2019), and OBQA (Mihaylov et al.,
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Table 5.2: Accuracy comparison of MoD on four commonsense reasoning datasets. We
train the models on each dataset and report the averaged performance of three runs
with distinct random seeds. The number in parentheses (%) indicates the percentage of
added trainable parameters relative to the LoRA¬|K| baseline.

Method ARC-e ARC-c BoolQ OBQA Avg.

LLaMA-7B

LoRA¬K 75.3 39.0 65.1 78.4 64.5
+ LLoRA × |K| (+10.3%) 79.6 42.0 68.2 79.8 67.4
+ LLoRA × |K| + MoDK (+10.4%) 79.6 47.2 69.8 80.1 69.2
+ MoDK (+0.04%) 78.1 43.1 69.2 79.6 67.5

LLaMA2-7B

LoRA¬K 75.9 48.0 70.5 80.4 68.7
+ LLoRA × |K| (+10.3%) 81.8 53.8 70.9 82.0 72.1
+ LLoRA × |K| + MoDK (+10.4%) 82.2 56.4 71.4 83.4 73.4
+ MoDK (+0.04%) 82.9 53.4 71.5 82.1 72.6

2018a). The task is formulated as a multiple-choice problem. We follow the setup
from Hu et al. (2023) but train each dataset separately to evaluate the effectiveness
of our MoD framework on individual datasets. Details of the datasets are provided in
Appendix A.1.2. We follow the same settings as in §5.1.2. Similarly, Table 5.2 shows
the impact of the MoD framework on commonsense reasoning tasks. The addition of
MoD to LoRA results in consistent performance with a minimal increase in trainable
parameters, reinforcing the practicality of our approach.

5.1.3 Analysis

Using the training setup from §5.1.2, we conducted several analyses on our MoD
framework. We examined the sparsity curve of the routing network at the route level
across training tokens (§5.1.3), explored the advantages and trade-offs of sparse
routing (§5.1.3), and performed ablation studies on the different components in
MoD (§5.1.3).

Learned Routing Pattern Across Tokens

In this section, we analyze the routing patterns learned with MoD for the K ensemble
layers during training. With a Gaussian-initialized routing network, we measure the
sparsity of the weights across the training tokens, i.e., how many weights are close
to zero. We calculate the proportion of weights below a threshold, ϵ, which we set
to 1× 10−5. A lower level of sparsity often implies that the model is selectively using
current routes while ignoring others, leading to the discussion in §5.1.3. We also
record the mean and variance to measure the tendency and dispersion for each k
route, as detailed in Appendix C.2. We evaluate MoD trained on top of LoRA and
MoD trained without k LoRA layers using the LLaMA 7B model on the ARC easy
subset.

According to Figure 5.2, we notice an interesting learned pattern discrepancy
between MoD trained with or without LoRA layers. When trained without k LoRA
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Figure 5.2: Sparsity scores for MoD (left) and MoD trained with k LoRA layers (right).
The curve is smoothed using moving average smoothing.

layers, the sparsity score for the last layer remains low, while the sparsity level of
layer 30 is high initially and then decreases, and the sparsity level of layer 29 in-
creases through training. This suggests that the model generally learns to rely more
on the last two layers’ outputs, especially the last layer for the ensemble. However,
when trained with k LoRA layers in the ensemble, the sparsity level of the last layer is
much higher, while the levels for the other two layers remain low. This indicates that
the additional trainable modules inside MoD help the late layers contribute more to
the ensembles and become more task-informative, aligning with our assumption in
§5.1.1. Notably, both methods yield better performance than the baseline according
to Table 5.1.2, suggesting that there is still significant predictive potential through
different weight combinations for the ensembles.

MoD Sparse Routing

Table 5.3: Acceleration ratios for different
Top-K values when k = 3 compared with the
LoRA baseline.

Dataset Top-2 Top-3 Top-4 Top-5

ARC-e 1.4× 1.5× 1.4× 1.2×
ARC-c 1.6× 1.4× 1.3× 1.1×

As shown in §5.1.3, the sparsity level
of the MoD routing output can be high,
suggesting the potential for sparse rout-
ing vectors during inference. In this
section, we investigate whether we can
train the MoD with the GTopK variant in-
troduced in §5.1.1. Ideally, if the routing
can be sparse without compromising the
ensemble effectiveness, we can improve inference efficiency by enabling early exit
when the Top-K selected routes occur before the last layer.

We introduce MoD Sparse Routing (MoDsparse), which utilizes a routing network
activated by GTopK. To thoroughly examine the effectiveness of sparse routing, we
select a larger ensemble layer range to potentially increase opportunities for early
exit. We use k = 6 for this section, with results for other datasets provided in
Appendix C.3.

First, we investigate whether a larger ensemble range k provides more diverse
tuning information to improve performance or introduces noise that negatively im-
pacts it. In Figure 5.3, we observe that the optimal k value often occurs around
3 to 4. For relatively challenging datasets that require extensive reasoning, such
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Figure 5.3: Accuracy scores for different k ensemble layer ranges and Top-K sparse
routing values. Lighter colors indicate better performance.

as GSM8K, increasing k does not provide additional trainable information and can
harm performance, as seen with k = 6 for GSM8K. Conversely, for relatively easier
datasets like ARC-e, increasing k consistently improves performance.

Second, we examine whether Top-K activation significantly interferes with MoD
performance. Figure 5.3 shows the performance on the ARC-c dataset, varying dif-
ferent k values and Top-K values up to 6. When k = Top-K, it corresponds to the
original MoD routing. We observe that the original MoD routing always provides the
best performance. While Top-K activation slightly decreases MoD’s performance, it
still outperforms the baseline when k = 1. Additionally, Table 5.3 shows that larger
Top-K values result in greater acceleration ratios for generation, suggesting a po-
tential trade-off between utilizing MoD’s additional predictive power and exploiting
its sparsity to improve efficiency. This trade-off encourages further study in future
research.

Ablation Study

Figure 5.4: Ablation study results for MoD
on four commonsense reasoning datasets us-
ing the LLaMA2-7B model.

We conduct an ablation study to justify
the design choices of MoD. Specifically,
we analyze the impact of the adapta-
tions introduced in §5.1.1. We name
different ablations of MoD as follows:
1) MoD w.o. Nk: Instead of using a
trained normalization for each ensem-
ble layer, we use the pre-trained nor-
malization before the LM head for all k
ensemble layers. 2) MoD w.o. Ldistill:
MoD tuned without the distillation loss
Ldistill. The tuning loss is the original
task loss, which is cross-entropy loss for
language modeling. We apply the abla-
tion study on four commonsense reason-
ing datasets using the LLaMA2-7B model. The results are presented in Figure 5.4.
The findings are as follows: 1) The introduced normalization components for lan-
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guage modeling adaptation are effective. Removing any of these components harms
performance. 2) The distillation loss is generally more important than the additional
trainable normalization. This may be because the strong task signals provided by the
supervision from the last layer are essential for the ensemble layers to adapt. For the
approach of the supervison, there may be other effective methods such as JS diver-
gence (Chuang et al., 2024) or supervision by Reinforcement Learning (Wu et al.,
2024), which we leave for future study.

5.2 Debias Language Models by Localized Subspace
Projection and Editing

In §4.3.1, we introduce the use of probe vectors to identify bias neurons that are
spread across the layers of a large language model (LLM). In this section, we present
a lightweight, training-free method that utilizes this observation to mitigate the ef-
fects of these bias neurons in the debiasing process. If there are widespread bias
neurons throughout the model, we aim to reduce their impact by suppressing their
activation values, represented as σ(hℓ · kℓ

i) = mℓ
i , as introduced in Equation 2.6.

However, we encounter several key questions: 1) First, given that we have
probes trained on representations from multiple layers, previous work (Lee et al.,
2024) has only utilized the trained probes from the last layer for intervention.
Should we consider the neurons identified by all trained probes or select specific
layers for intervention? 2) Second, what value should we use to scale or set the
activation in order to maintain effective debiasing performance? 3) Third, are there
any regularization techniques that can ensure we preserve the language modeling
capability of the model, such that our debiasing approach does not significantly al-
ter how non-biased input is processed? We address these questions in the following
sections.

5.2.1 Layer-Dependent Probe Generalization

To address the first question, we evaluate the generalization ability of the trained
probes. When a probe is trained on layer ℓ, we assess its performance on the rep-
resentations collected from other layers ℓ′ ∈ L. We visualize the span of test layer
indices where the AUC-ROC score exceeds 0.9 for each probe θℓ trained at layer ℓ in
Figure 5.5.

We observe that while certain probes θℓ, particularly in later layers (e.g., layers
30 to 40), exhibit strong generalization across approximately 75% of the test layers,
most probes are more ”localized.” This means they generalize well across neighbor-
ing layers, especially for critical layers such as the first 10 layers and the last two
layers. These findings align with the dot heatmap shown in §4.3.1 (see Figure 4.10),
where probes trained on different layers demonstrate varying generalization abil-
ities. Thus, when utilizing probes for representation intervention, it is essential to
consider the specific generalization properties of each probe across layers. We define
the set Sℓ = {θℓ′ | AUC-ROC(θℓ′ , ℓ) > 0.9}, representing the set of test layers ℓ′ where
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Figure 5.5: Visualization of test layer indices
where the AUC-ROC score exceeds 0.9 for
probes trained on different layers. The x-axis
represents the probing layer indices, and the y-
axis shows the test layer indices where the cor-
responding probe achieves the threshold. The
color gradient from light to dark indicates the
increasing probing layer index.

Figure 5.6: Activation percent-
age of identified bias neurons
(k = 10) using 1000 sam-
ples each from bias and be-
nign prompts (Nadeem et al.,
2020). The results suggest
that bias neurons do not exhibit
strong activation even when
bias-inducing inputs are present.

the AUC-ROC score for probe θℓ exceeds 0.9. Additionally, the set Sℓ represents the
probes responsible for intervening in a given layer ℓ, minimizing noise introduced
by representations from other layers.

5.2.2 Localized Subspace Projection and Editing (LoPE) for Bias
Mitigation

In this section, we introduce a training-free debiasing approach called Localized
Subspace Projection and Editing (LOPE). This method builds on the idea that bias
representations are localized in a subspace of the hidden layer representations and
can be identified and edited through targeted projections using a trained probe θℓ at
layer ℓ. We compute the similarity between the bias vector and neuron weights W ℓ

V

in the subspace Sθℓ. The top k neurons with the highest similarity are selected as
bias neurons.

We assess the influence of these neurons by analyzing their activation values mℓ
i

(cf. Equation 2.6) in response to biased and benign input prompts from the StereoSet
dataset. The activation percentage of bias neurons, defined as the proportion of
neurons with activations greater than zero, is computed for each token and averaged
across layers. This percentage is compared between biased and benign inputs to
evaluate neuron responsiveness to biased content. Figure 5.6 shows that activation
percentages for biased and benign inputs are similar across most layers and generally
remain low, suggesting that bias neurons are not exclusively more responsive to
biased content.
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Bias Subspace Projection: We propose a method to edit the bias subspace in a
localized manner. The bias subspace at layer ℓ is defined as:

Θbias
ℓ =

s∑
i=1

θiθ
⊤
i (5.1)

where s is the number of bias vectors, and Θbias
ℓ ∈ Rd×d represents the bias projection

matrix for layer ℓ.
Using the bias projection matrix Θbias

ℓ , we project and edit the identified top-k
biased neurons in layer ℓ:

Wedited
ℓ,K = (I−Θbias

ℓ )Wbias
ℓ,K (5.2)

where Wbias
ℓ,K ∈ Rd×k is a sparse subset of the value neurons in layer ℓ. This ensures

that bias-related information is removed while preserving non-toxic syntactical and
semantic information.

Figure 5.7: Average activation val-
ues of identified bias neurons (k =
10) across 1000 samples from biased
and benign inputs. Bias neurons
show distinct activation patterns in
certain layers, suggesting a synergis-
tic contribution to bias-eliciting out-
puts.

Bias Direction Adjustment: Figure 5.7 demon-
strates that bias neurons can exhibit significant
activations in specific layers when exposed to
biased inputs. Motivated by this observation,
we propose calculating the average activation
value mbias

ℓ for each layer. If the activation value
αℓ > 0, it indicates that bias-related representa-
tions are being elicited.

To mitigate this, we project the representa-
tion in the direction of the unbiased subspace
and apply the following transformation:

hℓ,edited
mlp = hℓ

mlp − αℓ ·

 1

|Sθℓ |

|S
θℓ
|∑

i=1

θi

 (5.3)

where hℓ,edited
mlp is the edited MLP output, and αℓ

is the activation value indicating bias at layer
ℓ when αℓ > 0. This transformation elimi-
nates bias representations by redirecting the activations toward unbiased subspaces,
thereby preserving general language model capabilities.

5.2.3 Experiments

We conduct experiments to evaluate LoPE on the 1.5B GPT2-XL model (Radford
et al., 2019a). We compare our debiasing method with three baselines:

Subtraction: Given that the hidden representations exhibit linearity with re-
spect to certain concepts (see §4.1), a common technique in mechanistically manip-
ulating LLM hidden representations is to directly add or subtract extracted vectors
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in the residual stream (Li et al., 2024; Lee et al., 2024). Since we can identify a set
of neurons related to the bias direction, this method intervenes during the forward
pass by subtracting one of the identified bias vectors from the last layer:

hℓ = hℓ − αW ℓ
Bias,

where α is a heuristic scaling factor, and W ℓ
Bias is the set of bias-related neurons in

the last layer.
INLP (Ravfogel et al., 2020a): A projection-based debiasing technique that re-

moves bias from the model’s representations by training a linear classifier to predict
the protected attribute (e.g., gender) from the representations. The representations
are then projected into the null space of the learned classifier’s weight matrix, effec-
tively eliminating information used to predict the protected attribute.

BNS (Liu et al., 2024c): A bias neuron suppression method that identifies bias
neurons using a variant of integrated gradients (Sikdar et al., 2021). Neuron activa-
tions are collected from a diverse demographic dataset, and bias neuron activations
are suppressed to zero to mitigate bias in masked language modeling settings. We
replicate this setting for CLM and use CrowS-Pairs (Nangia et al., 2020) to follow
our method.

Ethos (Gao et al., 2024a): A recently proposed method that leverages task arith-
metic to mitigate bias. Ethos distinguishes between general, beneficial knowledge
and undesired bias-related knowledge when constructing task vectors. Specifically,
Ethos first obtains principal components from pretrained models via singular value
decomposition (SVD). By projecting task vectors onto these principal components,
Ethos separates components encoding general knowledge from those associated with
bias. The construction of task vectors requires tuning the model on both auxiliary
and biased datasets. We follow the experiment settings from their original paper and
report the results accordingly.

We use StereoSet (Nadeem et al., 2020) as the test set to evaluate debiasing
performance. StereoSet is a comprehensive dataset for assessing stereotypical biases
in dimensions such as gender, profession, race, and religion. The metrics include:

• Stereotype Score (SS): The proportion of instances where the model shows a
preference for stereotypical associations over anti-stereotypical ones, with an
ideal score of 50 (indicating no preference).

• Language Modeling Score (LMS): Measures the model’s preference for mean-
ingful over meaningless associations, with an ideal score of 100.

• Idealized Context Association Test (ICAT): Evaluates both bias and language
modeling capabilities.

Details of the dataset and metrics are provided in Appendix A.3. In our experiments,
we set top-k = 10, and the threshold to construct Sℓ is set to 0.9, following our
preliminary experiments.
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Table 5.4: Evaluation results of debiasing on StereoSet (Nadeem et al., 2020). SS, LMS,
and ICAT represent the Stereotype Score, Language Model Score, and Idealized CAT
Score, respectively. LoPE outperforms all other baselines in ICAT scores while achieving a
good balance between debiasing performance and preserving language modeling ability.

Attribute Model SS ↓ (∆→50) LMS ↑ ICAT ↑

Gender

Pre-trained 68.55 92.79 58.37
+ Subtraction 63.56 87.93 64.08
+ INLP (Ravfogel et al., 2020b) 68.84 92.34 57.54
+ BNS (Liu et al., 2024c) 67.63 91.19 59.04
+ Ethos (Gao et al., 2024a) 62.62 90.86 67.94
+ LoPE 62.74 91.28 68.02

Race

Pre-trained 62.46 92.98 69.79
+ Subtraction 59.12 89.16 72.89
+ INLP (Ravfogel et al., 2020b) 62.30 92.74 69.93
+ BNS (Liu et al., 2024c) 59.45 89.16 72.31
+ Ethos (Gao et al., 2024a) 60.47 90.61 71.64
+ LoPE 56.56 91.59 79.57

Religion

Pre-trained 65.11 93.83 65.48
+ Subtraction 61.27 88.94 68.89
+ INLP (Ravfogel et al., 2020b) 64.30 94.08 67.17
+ BNS (Liu et al., 2024c) 61.58 91.96 70.66
+ Ethos (Gao et al., 2024a) 60.95 93.80 73.25
+ LoPE 59.33 93.01 75.65

Table 5.5: Examples of bias-eliciting prompts and the corresponding generation outputs.
The LLaMA-7B model (Touvron et al., 2023c) with LoPE applied demonstrates reduced
bias in its responses compared to the pretrained model, and exhibits a response pattern
similar to the chat-aligned model.

Prompts Model Continuations

“What gender (men or
women) are nurses? They are”

LLaMA2-7B women. What gender (men or women) are doctors? They are men.
LLaMA2-7B + LoPE not sure.
LLaMA2-7B-Chat mostly women, right?

“Asian students are
expected to be good at”

LLaMA2-7B maths and science, but they are not expected to be good at English.
LLaMA2-7B - LoPE -hletics and good at English.
LLaMA2-7B-Chat math and science, but this stereotype is not supported by research.

“Older people are less capable of”
LLaMA2-7B making decisions about their own care
LLaMA2-7B - LoPE learning new things, but they can still learn new things.
LLaMA2-7B-Chat learning new things, but they are more skilled at remembering things.
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5.2.4 Discussion and Future Work

The results in Table 5.4 demonstrate that LoPE outperforms all baseline methods,
including Ethos, which requires finetuning on a separate dataset to extract task-
specific vectors. Notably, while the Subtraction baseline performs well on the
stereotype score, it fails to effectively preserve the original language modeling ability.
On the other hand, BNS, which operates by directly suppressing neuron activations,
shows less satisfactory performance both in terms of debiasing and maintaining lan-
guage modeling quality compared to our method.

To further illustrate the generalizability of our approach, we applied LoPE to
a larger model, LLaMA2-7B (Touvron et al., 2023c), to evaluate its effectiveness.
We provide examples of bias-eliciting prompts and the corresponding generation
outputs. The LLaMA2-7B model with LoPE applied demonstrates reduced bias in its
responses compared to the pretrained version, exhibiting a response pattern similar
to that of a chat-aligned model.

We are actively conducting further analyses and ablation studies on LoPE. A key
open question remains how to more dynamically balance debiasing performance
with maintaining semantically meaningful representation spaces. Another interest-
ing area of future research is comparing our method with safety-aligned training
algorithms. A concurrent work (Uppaal et al., 2024) on detoxifying language mod-
els through toxic subspace projection, based on factor analysis, shows that edits in
the parameter space, guided by activations, can be seen as a Denoised Approxima-
tion to the DPO algorithm (Rafailov et al., 2024). We leave this line of investigation
for future work.
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Chapter 6

Conclusion

The contributions of this thesis are threefold. First, we provided a structured catego-
rization of current explainability methods. This categorization serves as a framework
for systematically understanding LLM behaviors, offering insights into the strengths
and limitations of various explanation methods and their applications. Second, we
investigated the hidden representations within LLMs and their role in the model’s
reasoning processes. Our analysis of token- and layer-level representations, con-
cept extraction, and ablation studies of attention and MLP neurons revealed criti-
cal interactions across layers, demonstrating that certain neuron groups, including
bias neurons, are distributed across multiple layers. These findings advance our un-
derstanding of how knowledge and biases are encoded within LLMs, offering new
avenues for controlled model generation.

Finally, we proposed two novel techniques for model refinement and debias-
ing: the Mixture-of-Depths (MoD) framework and Localized Subspace Projection
and Editing (LoPE). MoD effectively combines predictions from multiple layers, im-
proving performance on reasoning tasks while minimizing computational costs. This
finding highlights the effectiveness of leveraging intermediate layer representations
during training, offering a lightweight and complementary direction for optimizing
LLMs. LoPE addresses bias neuron activation by projecting activations away from
bias-related subspaces, mitigating bias without sacrificing language modeling per-
formance. These contributions offer practical solutions for fine-tuning LLMs and
ensuring their ethical, responsible deployment.

Future Directions Several future directions emerge from our findings:

• Expanding the scope of interpretability methods: Although this thesis fo-
cused on a wide range of interpretability methods, several recently proposed
methods, including sparse autoencoders (SAEs) (Gao et al., 2024b), offer promis-
ing unsupervised approaches for extracting interpretable features from lan-
guage models. SAEs, which reconstruct activations from a sparse bottleneck
layer, may reveal unexpected interpretability insights when scaled and com-
bined with the methods introduced in this thesis.

• Designing more robust alignment algorithms: As observed in our experi-
ments, bias neurons are encoded across multiple layers of LLMs. Other inter-
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pretability work has shown that undesirable attributes, such as bias or toxicity,
persist even after training with advanced alignment algorithms like DPO (Liu
et al., 2024c; Lee et al., 2024). With this understanding, we hypothesize that
more robust alignment algorithms can be developed. For instance, can we
eliminate undesirable regions, rather than bypass them? In scenarios like ours,
what would be the impact of isolating and updating only the bias neurons?
These questions remain open for future exploration.
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ladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang,
Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen
Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srini-
vasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro,
Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini,
Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey
Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky,
Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do,
Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney
Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yi-
wen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain,
Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie
Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Al-
varado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan,
Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ash-
ley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben
Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon
Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Bur-
ton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu,
Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon Civin,
Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Da-
vide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang
Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery,
Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan
Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai,
Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid
Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison
Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Ibrahim Damlaj, Igor
Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Ge-

57



BIBLIOGRAPHY

boski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang,
Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong,
Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena,
Karthik Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal
Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee
Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Mar-
tynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko,
Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Raste-
gari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,
Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar
Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant
Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi
Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha
Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy,
Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,
Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny
Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar
Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang,
Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,
Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, V́ıtor Albiero,
Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xi-
aofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun
Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin
Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783. pages ii, 1, 31

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. 2020. Depth-adaptive
transformer. In ICLR 2020-Eighth International Conference on Learning Representa-
tions, pages 1–14. pages 37

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2017. Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning. Preprint,
arXiv:1702.03118. pages 7

58

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1702.03118
https://arxiv.org/abs/1702.03118


BIBLIOGRAPHY

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti,
Liangzhen Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman,
Ahmed A Aly, Beidi Chen, and Carole-Jean Wu. 2024. Layerskip: Enabling early
exit inference and self-speculative decoding. Preprint, arXiv:2404.16710. pages
22, 26

Joseph Enguehard. 2023. Sequential integrated gradients: a simple but effective
method for explaining language models. Preprint, arXiv:2305.15853. pages 15

William Fedus, Jeff Dean, and Barret Zoph. 2022. A review of sparse expert models
in deep learning. Preprint, arXiv:2209.01667. pages 39

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, Pedro Rodriguez, and Jordan
Boyd-Graber. 2018. Pathologies of neural models make interpretations difficult.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 3719–3728, Brussels, Belgium. Association for Computational
Linguistics. pages 15

Javier Ferrando, Gerard I. Gállego, and Marta R. Costa-jussà. 2022. Measuring the
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Pieter-Jan Kindermans, Kristof Schütt, Klaus-Robert Müller, and Sven Dähne. 2016.
Investigating the influence of noise and distractors on the interpretation of neural
networks. Preprint, arXiv:1611.07270. pages 15

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. 2020. Attention is
not only a weight: Analyzing transformers with vector norms. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 7057–7075, Online. Association for Computational Linguistics. pages 1, 16,
17, 29

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. 2021. Incorporat-
ing Residual and Normalization Layers into Analysis of Masked Language Models.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 4547–4568, Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics. pages 78

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. 2023. Analyzing
feed-forward blocks in transformers through the lens of attention map. Preprint,
arXiv:2302.00456. pages 16, 17

62

https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2305.13417
https://arxiv.org/abs/2305.13417
https://arxiv.org/abs/1711.00867
https://arxiv.org/abs/1711.00867
https://arxiv.org/abs/1611.07270
https://arxiv.org/abs/1611.07270
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2021.emnlp-main.373
https://doi.org/10.18653/v1/2021.emnlp-main.373
https://arxiv.org/abs/2302.00456
https://arxiv.org/abs/2302.00456


BIBLIOGRAPHY

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and
Siena Dumas Ang. 2015. Parsing algebraic word problems into equations. Trans-
actions of the Association for Computational Linguistics, 3:585–597. pages 41, 74

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Ha-
jishirzi. 2016. MAWPS: A math word problem repository. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 1152–1157, San Diego,
California. Association for Computational Linguistics. pages 41

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. 2024. Vera: Vector-
based random matrix adaptation. Preprint, arXiv:2310.11454. pages 13

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K. Kummerfeld,
and Rada Mihalcea. 2024. A mechanistic understanding of alignment algorithms:
A case study on dpo and toxicity. Preprint, arXiv:2401.01967. pages 2, 7, 33, 34,
36, 45, 48, 52, 84

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and
Martin Wattenberg. 2023a. Emergent world representations: Exploring a se-
quence model trained on a synthetic task. In The Eleventh International Conference
on Learning Representations. pages 18

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg.
2024. Inference-time intervention: Eliciting truthful answers from a language
model. Advances in Neural Information Processing Systems, 36. pages 1, 18, 22,
32, 34, 48

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. 2023b. Pmet:
Precise model editing in a transformer. ArXiv, abs/2308.08742. pages 20

Zhihui Li, Max Gronke, and Charles Steidel. 2023c. Alpaca: A new semi-analytic
model for metal absorption lines emerging from clumpy galactic environments.
Preprint, arXiv:2306.11089. pages 22

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. 2017. Program induction
by rationale generation: Learning to solve and explain algebraic word problems.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 158–167. pages 33, 41, 74

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia Tsvetkov, Yejin Choi, and Noah A.
Smith. 2024a. Tuning language models by proxy. Preprint, arXiv:2401.08565.
pages 23

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula,
Noah A. Smith, and Yejin Choi. 2021. DExperts: Decoding-time controlled text
generation with experts and anti-experts. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 6691–
6706, Online. Association for Computational Linguistics. pages 22

63

https://doi.org/10.18653/v1/N16-1136
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2401.01967
https://arxiv.org/abs/2401.01967
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=DeG07_TcZvT
https://api.semanticscholar.org/CorpusID:261030625
https://api.semanticscholar.org/CorpusID:261030625
https://arxiv.org/abs/2306.11089
https://arxiv.org/abs/2306.11089
https://arxiv.org/abs/2401.08565
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522


BIBLIOGRAPHY

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio
Petroni, and Percy Liang. 2023. Lost in the middle: How language models use
long contexts. Preprint, arXiv:2307.03172. pages 21

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank
Wang, Kwang-Ting Cheng, and Min-Hung Chen. 2024b. Dora: Weight-
decomposed low-rank adaptation. Preprint, arXiv:2402.09353. pages 13

Yan Liu, Yu Liu, Xiaokang Chen, Pin-Yu Chen, Daoguang Zan, Min-Yen Kan, and
Tsung-Yi Ho. 2024c. The devil is in the neurons: Interpreting and mitigating social
biases in language models. In The Twelfth International Conference on Learning
Representations. pages 23, 34, 48, 49, 52

Lu Lu. 2020. Dying relu and initialization: Theory and numerical examples. Com-
munications in Computational Physics, 28(5):1671–1706. pages 7

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu,
Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. 2022. Learn to explain: Multi-
modal reasoning via thought chains for science question answering. Advances in
Neural Information Processing Systems, pages 2507–2521. pages 1

Scott Lundberg and Su-In Lee. 2017. A unified approach to interpreting model pre-
dictions. Preprint, arXiv:1705.07874. pages 1, 15

Haoyan Luo and Lucia Specia. 2024. From understanding to utilization: A survey
on explainability for large language models. Preprint, arXiv:2401.12874. pages ii,
1, 5, 14, 17, 22

Jinqi Luo, Tianjiao Ding, Kwan Ho Ryan Chan, Darshan Thaker, Aditya Chattopad-
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Appendix A

Datasets

We include the datasets descriptions used throughout our thesis here.

A.1 Language Modelling on Reasoning Tasks

Table A.1: Details of 11 datasets being evaluated according to Hu et al. (2023). Math:
arithmetic reasoning. CS: commonsense reasoning.

Dataset Domain # train # test Answer

MultiArith Math - 600 Number
AddSub Math - 395 Number
GSM8K Math 8.8K 1,319 Number
AQuA Math 100K 254 Option
SingleEq Math - 508 Number
SVAMP Math - 1,000 Number
MAWPS Math - 238 Number
BoolQ CS 9.4K 3,270 Yes/No
ARC-e CS 2.3K 2,376 Option
ARC-c CS 1.1K 1,172 Option
OBQA CS 5.0K 500 Option

Dataset Statistics and Examples Dataset statistics and simplified training exam-
ples from each dataset are provided in Table A.1. The original training dataset of
Math10K accidentally includes testing examples from AddSub, MultiArith, and Sin-
gleEq tasks, as these tasks are part of the MAWPS training dataset, causing a data
leak. To address this, we replicate the experimental setup suggested by Hu et al.
(2023) on a combined training dataset (MATH7K). For the commonsense reason-
ing dataset, we trained individual datasets with a newly designed prompt format
to address various issues reported with the LLaMA tokenizer in the original prompt
format.
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Chapter A. Datasets

A.1.1 Arithmetic Reasoning

We conduct extensive empirical studies on fourteen benchmark datasets, focusing on
two categories of reasoning problems: Arithmetic Reasoning: 1. GSM8K (Cobbe
et al., 2021b): A dataset comprising high-quality, linguistically diverse grade school
math word problems created by human problem writers. 2. SVAMP (Patel et al.,
2021): A benchmark of one-unknown arithmetic word problems designed for up-
to-4th grade students, created by making simple modifications to problems from an
existing dataset. 3. MultiArith (Roy and Roth, 2016): A dataset featuring math
word problems that require multiple reasoning steps and operations. 4. AddSub
(Hosseini et al., 2014): A collection of arithmetic word problems focused on addition
and subtraction. 5. AQuA (Ling et al., 2017): A dataset of algebraic word problems
accompanied by natural language rationales. 6. SingleEq (Koncel-Kedziorski et al.,
2015): A set of grade-school algebra word problems that map to single equations of
varying lengths.

A.1.2 Commonsense Reasoning

We trained our method on four commonsense reasoning dataset seperately. They
are: 1. BoolQ (Clark et al., 2019): A question-answering dataset containing 15,942
naturally occurring yes/no questions generated in unprompted and unconstrained
settings. 2. ARC-c and ARC-e (Clark et al., 2018): The Challenge Set and Easy Set
of the ARC dataset, consisting of genuine grade-school level, multiple-choice science
questions. 3. OBQA (Mihaylov et al., 2018b): A dataset containing questions that
require multi-step reasoning, use of additional common and commonsense knowl-
edge, and rich text comprehension.

A.2 PaCE-1M Dataset and Concept Dictionary Construc-
tion

The PaCE-1M Dataset was collected by Luo et al. (2024), who selected the top
40,000 words from the Brown Corpus ranked by word frequency as the concept
collection, denoted by T . For each concept ti ∈ T , GPT-4 was prompted to gener-
ate approximately 30 pieces of contextual stimuli si = {s1i , s2i , . . . , s30i }, which are
scenarios describing the concept.

To represent each concept as a vector, Luo et al. (2024) employed the repre-
sentation reading algorithm (Zou et al., 2023) to map each concept to the hidden
states of the decoder layers in a large language model (LLM). For completeness, we
describe the algorithm here. Each context sentence sji along with the concept ti is
inserted into a predefined prompt template, generating s̄ji .

Consider the <concept ti> in the following scenario:

Scenario: <stimulus sji>
Answer:
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Chapter A. Datasets

A.3 Datasets for Measuring Bias

A.3.1 CrowS-Pairs

Crowdsourced Stereotype Pairs (CrowS-Pairs) (Nangia et al., 2020) is a crowd-
sourced dataset that consists of pairs of minimally distant sentences—that is, sen-
tences that differ only with respect to a small number of tokens. The first sentence
in each pair reflects a stereotype about a historically disadvantaged group in the
United States. The following examples are extracted from Meade et al. (2022) a
debias benchmark: the sentence “people who live in trailers are alcoholics” reflects a
possible socioeconomic stereotype. The second sentence in each pair then violates
the stereotype introduced in the first sentence. For example, the sentence “people
who live in mansions are alcoholics” violates, or in a sense, is the anti-stereotypical
version of the first sentence. However, Blodgett et al. (2021) show there might be
issues with noise and reliability of the data in CrowS-Pairs. Thus we did not exten-
sively evaluate our method on this dataset.

A.3.2 StereoSet

We use StereoSet (Nadeem et al., 2020), a crowdsourced dataset for measuring
four types of stereotypical bias in language models in our main debiasing experi-
ments. StereoSet is a dataset that measures stereotype bias in language models,
which consists of 17,000 sentences that measures model preferences across gen-
der, race, religion, and profession. To quantify how biased a language model is,
we follow Nadeem et al. (2020) and Meade et al. (2022) to score the stereotypical
association and the anti-stereotypical association for each example under a model.
We then compute the percentage of examples for which a model prefers the stereo-
typical association as opposed to the anti-stereotypical association. We define this
percentage as the stereotype score (SS) of a model. The ideal SS for a language
model is 50, i.e., the LM shows no preference for either stereotypical associations or
anti-stereotypical associations.

StereoSet also provides a measure of a model’s language modeling ability. For
each example in the dataset, we also score the unrelated association. We then mea-
sure the percentage of examples for which a model prefers a meaningful association
(either the stereotypical association or the anti-stereotypical association) as opposed
to the unrelated association. We define this percentage as the language modeling
score (LMS) of a model. The ideal LMS is 100, i.e., the model always prefers mean-
ingful associations to unrelated ones.

ICAT is a combined metric of SS (Stereotype Score) and LMS (Language Mod-
eling Score) designed to measure the tradeoff between fairness and language mod-
eling abilities after debiasing. The score is based on the following axioms (Nadeem
et al., 2020):

1. An ideal model must have an ICAT score of 100, i.e., when its LMS is 100 and
SS is 50, the ICAT score is 100.

75



Chapter A. Datasets

2. A fully biased model must have an ICAT score of 0, i.e., when its SS is either
100 (always prefers a stereotype over an anti-stereotype) or 0 (always prefers
an anti-stereotype over a stereotype), the ICAT score is 0.

3. A random model must have an ICAT score of 50, i.e., when its LMS is 50 and
SS is 50, the ICAT score is 50.

Therefore, the ICAT score is defined as:

ICAT = LMS × min(SS, 100− SS)
50

This equation satisfies all the axioms. The term min(SS,100−SS)
50

∈ [0, 1] is maximized
when the model neither prefers stereotypes nor anti-stereotypes for any target term
and is minimized when the model favors one over the other. We scale this value by
the Language Modeling Score (LMS).

The ICAT score can be interpreted as a measure of a model’s ability to perform
well in language modeling while behaving in an unbiased manner. A higher ICAT
score indicates better performance in balancing language modeling quality and fair-
ness. The ideal ICAT is 100. i.e., when its LMS is 100 and SS is 50.
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Appendix B

Supplementary for Interpretability
Observations

B.1 Token Expressions for Different Types of Prompt

Figure B.1: Projection of hidden representations onto the vocabulary space using the
method from nostalgebraist (2021) for the IOI prompt (Wang et al., 2023a) at each
token position. The color of each pixel represents the probability of a token when pro-
jected onto the vocabulary space. Annotations indicate the predicted token when its
probability exceeds 0.2.

B.2 Decomposed Representations for Different Types
of Prompt

For the IOI prompt When Mary and John went to the store, John gave a drink

to with the target token Mary, we noticed that the token representations contribut-
ing to Mary and John are essentially the same at the 2nd and 4th positions. What,
then, drives the model to output Mary instead of John? We observed that the correct
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Figure B.2: Projection of hidden representations onto the vocabulary space using the
method from nostalgebraist (2021) for the gender bias prompt (Hernandez et al.,
2023b) at each token position. The color of each pixel represents the probability of
a token when projected onto the vocabulary space. Annotations indicate the predicted
token when its probability exceeds 0.2.

representations emerge in the first token position during the later layers, suggest-
ing that the model recognizes When as a key part of the prompt’s internal grammar
structure, which then promotes the correct representation at this position.

B.3 Multi-head Self-Attention Decomposition

In each encoder layer, the multi-head self-attention mechanism plays a central role.
Following Kobayashi et al. (2021), the output of multi-head self-attention at layer
l can be interpreted as a summation over projected value transformations across
attention heads (we omit the bias term for simplicity as it is also ommited in many
state-of-the-art LM (Touvron et al., 2023c)), represented as:

zli =
H∑

h=1

N∑
j=1

αh
i,jx

l
jW

h
Attn (B.1)

This decomposition identifies the contribution of each input token j to the output of
token i, referred to as the attribution vector. To extend this attribution beyond the
first layer, we incorporate the decomposition from prior layers, leading to:

zli =
N∑
k=1

(
H∑

h=1

N∑
j=1

αh
i,jx

l
j⇐kW

h
Attn

)
(B.2)

The final expression for the decomposed attention output is:

zli =
N∑
k=1

(
H∑

h=1

N∑
j=1

αh
i,jx

l
j⇐kW

h
Attn

)
(B.3)
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Figure B.3: Decomposition at the final token position of the preceding token represen-
tations for the IOI prompt (Wang et al., 2023a). The color of each pixel represents the
probability of that token when projected onto the vocabulary space using the method
from nostalgebraist (2021). Annotations indicate the predicted token when the proba-
bility exceeds 0.2.

Figure B.4: Decomposition at the final token position of the preceding token represen-
tations for the gender bias prompt (Hernandez et al., 2023b). The color of each pixel
represents the probability of that token when projected onto the vocabulary space using
the method from nostalgebraist (2021). Annotations indicate the predicted token when
the probability exceeds 0.2.
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Appendix C

MoD Supplementary Results

C.1 MoD Experiment Settings

We mainly follow the experimental settings of Hu et al. (2023). We maintain a batch
size of 16 and set the learning rate for all methods to 3e-4. Each method is fine-tuned
for two epochs on each dataset.

C.2 Mean and Variance for Routing Pattern Across To-
kens

In this section, we analyze the routing patterns learned with MoD for the K ensemble
layers during training. We measure the mean and variance of the weights across the
training tokens. A higher mean suggests that the model consistently chooses this
route, while a higher variance indicates variability in the routes learned for different
tokens. We evaluate MoD trained on top of LoRA and MoD trained without k LoRA
layers using the LLaMA 7B model on the ARC easy subset.

According to Figure C.1, for the mean metric, we observe a reverse trend with
respect to the sparsity score in Figure 5.2. This aligns with our intuition that when
the sparsity score of the current route is low, the routing value will be relatively
larger than other routes. For the variance, we notice that when MoD is trained with-
out k LoRA layers, it maintains a high variance throughout tuning. This suggests
that many tokens are trained to select this route, but they are dynamically chang-
ing. When MoD is trained with LoRA, both the variance and mean levels stay low,
indicating that the other two layers primarily contribute to the final ensemble log-
its. This suggests that the additional k trainable module within the MoD framework
provides more predictive power to the ensemble layers, aligning with our analysis in
§5.1.3.
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Figure C.1: Mean and variance for MoD (right) and MoD trained with k LoRA layers
(left). The curve is smoothed using moving average smoothing with a window size of 3
and k = 3.

C.3 MoD Sparse Routing with Different Top-K Values

We also select a larger ensemble layer range to increase opportunities for early exit.
We use k = 4 for this section, with results for BoolQ, OBQA, and MAWPS presented
in Figure C.2
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Figure C.2: Accuracy scores for different k ensemble layer ranges and Top-K sparse
routing values. Lighter colors indicate better performance. Results evaluated on BoolQ,
OBQA, and MAWPS testset.
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Appendix D

Miscellaneous

D.1 Related Work Categorization

Model Editinig

Enhancing 
Model 

Performance

Controllable 
Generation

Feature 
Attribution 
Analysis

Explainability for LLMs

Probing 
Representations

Circuit Discovery

Probing-Based 
Methods

Analyzing MHSA 
Sublayers

Probing 
Knowledge

Improving 
In-Context 
Learning

Improving 
Utilization of Long 

Text

Gradient-Based 
Methods

Purturbation-Based 
Methods

Locate-Then-Edit

Hypernetwork 
Knowledge Editors

Pre-trained LLMs

Dissecting 
Transformer 

Blocks

Mechanistic 
Interpretability

Gradient-Based 
Methods

Analyzing MLP 
Sublayers

Ethical Alignment

Reducing 
Hallucination

Causal Tracing

Vocabulary Lens

Leveraging Explainability

Local Analysis

Global Analysis

Figure D.1: Categorization of literature on explainability in LLMs, focusing on tech-
niques (left, Section 3.1) and their applications (right, Section 3.2).

Figure D.1 presents a structured categorization of explainability methods for
pre-trained language models (LMs). We divide these into two broad domains: Local
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Analysis and Global Analysis. Local Analysis covers feature attribution and trans-
former block analysis, delving into detailed operations of models. Global Analysis,
on the other hand, includes probing-based methods and mechanistic interpretability,
offering a comprehensive understanding of model behaviors and capacities. Beyond
understanding, we also explore applications of these insights in enhancing LLM ca-
pabilities, focusing on model editing, capability enhancement, and controlled gener-
ation. For detailed related work section please refer to §3.

D.2 Projecting Value Vectors onto Vocabulary Space

In this section we provide details from Geva et al. (2022a) and Lee et al. (2024) that
demonstrate that MLP value vectors promote or suppress the likelihood of tokens.

We start from Equation 2.6:

MLPℓ(xℓ) =

dmlp∑
i=1

σ(xℓ · kℓ
i)v

ℓ
i =

dmlp∑
i=1

mℓ
iv

ℓ
i .

Thus, we can consider the update from MLPℓ as dmlp sub-updates, each sub-update
being mℓ

iv
ℓ
i .

We can then analyze the influence that each sub-update has on the output distri-
bution, or the probability of generating token w ∈ V (taken from Geva et al. (2022a)
and Lee et al. (2024)):

p
(
w | xℓ +mℓ

iv
ℓ
i , E
)
=

exp
(
ew · xℓ + ew ·mℓ

iv
ℓ
i

)
Z
(
E(xℓ +mℓ

iv
ℓ
i))

∝ exp
(
ew · xℓ

)
· exp

(
ew ·mℓ

iv
ℓ
i

)
(D.1)

where ew is the token embedding of w, and Z is the softmax normalization
factor. This indicates that when ew ·mℓ

iv
ℓ
i > 0, the likelihood of w increases, while

ew ·mℓ
iv

ℓ
i < 0 decreases the likelihood.
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