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Introduction

Mixture-of-Depths (MoD)

Traditional LLMs focus on final-layer loss
and representations, overlooking predictive
power in intermediate layers. We pro-
pose Mixture-of-Depths (MoD) framework,
which leverages late layers as ensembles
with learned additional routing weights. We
adapt late layer by adding distillation loss
and normalization modules. MoD integrates
with existing tuning methods, improving
performance on reasoning tasks with mini-
mal parameter increase. Remarkably, MoD
can achieves similar performance with 97%
fewer trainable parameters.
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Motivation: Intersection of solved problems by tuning loss layers on the AQuA, ARC-Challenge, and GSM8K datasets,
showing complementary test-time performance when tuning loss for late layers.
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Experiments

modules N, are trained individually for each
ensemble layer.

Sparsity of Routing Network
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For efficiency, we investigate sparse routing
with Top-K activation:

Gropk(x) := Softmax(TopK(z - W,)).

Optimal k£ value ranges from 3 to 4. Top-K
activation slightly reduces performance but
still outperforms the baseline when k = 1.
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Dataset | Top-2 Top-3 Top-4 Top-5
ARC-e 1.4x 1.5% 1.4x% 1.2%
ARC-c 1.6 % 1.4x 1.3X% 1.1x

Larger Top-K increase acceleration ratios,
suggesting a trade-off between utilizing the
predictive power and efficiency.

Accuracy

Both Lz and N enhance tuning perfor-
mance. Strong task signals from the last
layer are important for effective adaptation,
while routing network also demonstrates
strong performance independently.
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